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Abstract

In 1887 Woldemar Voigt published the paper “On Doppler’s Principle,” in which he demanded covariance

to the homogeneous wave equation in inertial reference frames, assumed the invariance of the speed of light

in these frames, and obtained a set of spacetime transformations different from the Lorentz transformations.

Without explicitly mentioning so, Voigt applied the postulates of special relativity to the wave equation.

Here, we review the original derivation of Voigt’s transformations and comment on their conceptual and

historical importance in the context of special relativity. We discuss the relation between the Voigt and

Lorentz transformations and derive the former from the conformal covariance of the wave equation.
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I. INTRODUCTION

In 1887 Woldemar Voigt published the article [1]: “On Doppler’s Principle,” which could arguably

be considered as the first paper of the relativistic era. In the first part of this article, Voigt demanded

covariance to the homogeneous wave equation in inertial reference frames, assumed the invariance

of the speed of light in these frames, and obtained a set of spacetime transformations now known

as Voigt’s transformations. In modern notation these transformations can be written as:

x′ = x− vt, t′ = t−
vx

c2
, y′ =

y

γ
, z′ =

z

γ
, (1)

where γ = 1/
√

1− v2/c2 is the Lorentz factor. Here we are assuming the standard configuration

of special relativity. Voigt’s transformations are similar to the well-known Lorentz transformations

of special relativity:

x′ = γ(x− vt), t′ = γ
(

t−
vx

c2

)

, y′ = y, z′ = z. (2)

If the right-hand side of Voigt’s transformations in equation (1) is multiplied by the Lorentz factor

γ then the Lorentz transformations in equation (2) are obtained. Despite the similarity between

Voigt and Lorentz transformations, the former are not usually mentioned in standard textbooks

[2–5]. Voigt’s transformations have been discussed in old textbooks [6–9], old papers [10, 11],

recent articles [12–20] and specialized books [21–23].

Some initial comments enlighten the conceptual and historical importance of Voigt’s 1887 pa-

per [1]: (i) Voigt derived his transformations by demanding covariance to the homogeneous wave

equation under inertial frames, which implied the form invariance of this equation, and this is one

application of what would be later known as the first postulate of special relativity. We must say,

however, that Voigt didn’t explicitly mention the terms “covariance” and “inertial frames.” He

used these concepts in practice; (ii) Covariance of the wave equation carried the invariance of the

speed of light, and this would be later known as the second postulate of special relativity. Remark-

ably, Voigt inadvertently applied in practice the postulates of special relativity to the wave equation

eighteen years before Einstein explicitly and concisely enunciated these postulates [24];(iii) Voigt

followed a formal procedure that allowed him to derive a first example of the now known con-

formal symmetry of spacetime. A general discussion of this symmetry was presented in 1909 by

Bateman [25] and Cunningham [26]; (iv) The well-established Newtonian absolute time: t′ = t

was questioned by Voigt’s non-absolute time: t′ = t − vx/c2. According to Ives [11] this was
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the first suggestion that: “...a ‘natural’ clock would alter its rate on motion.” In the same sense,

Simonyi [22] has noted that when discarding t′ = t, Voigt was “...opening the possibility for the

first time in the history of physics to call into question the concept of the absolute time.” Voigt’s

non-absolute time was re-introduced in 1895 by Lorentz [27] who called it “the local time.”

Interestingly, in a paper devoted to the Doppler effect, Voigt was inadvertently applying the

postulates of special relativity nearly two decades before Einstein explicitly and concisely men-

tioned these postulates. As pointed out by Ernst and Hsu [17]: “He was very close to suggesting

a conceptual framework for special relativity.” Unfortunately, Voigt’s transformations are not usu-

ally mentioned in standard textbooks despite the fact that they imply the same transformation law

for velocities of special relativity [12]. We believe that two basic reasons are key to understand-

ing why Voigt’s transformations have aroused scant interest among authors of standard textbooks:

Firstly, these transformations do not form a group [13] which makes them little attractive from

a physical point of view. Secondly, the original derivation of these transformations presented by

Voigt [1] is difficult to follow.

In this paper we hope to call attention to Voigt’s transformations: (a) by briefly reviewing

Voigt’s original derivation of these transformations and stressing the scant impact produced by

them amongst Voigt’s contemporaries; (b) by discussing the relation of these transformations to the

Lorentz transformations and (c) by presenting an alternative derivation of Voigt’s transformations

from the conformal invariance of the d’Alembert operator.

II. VOIGT’S 1887 PAPER

For a modern reader, Voigt’s 1887 paper [1]: “On Doppler’s Principle” looks like a note, some-

thing like a technical report, rather than a research paper. It does not contain an abstract nor a first

paragraph explaining the idea and purpose of the paper. In addition, it does not contain any refer-

ences. Many years later, Voigt would explain what he considered to be the basic idea developed in

his paper [28]:

“...it is about the applications of Doppler’s principle, which occur in special parts,

though not on the basis of the electromagnetic theory, but on the basis of the elastic

theory of light. However, already then some of the same consequences were given,

which were later gained from the electromagnetic theory.”
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Voigt mainly focussed his attention on the Doppler effect. The derivation of the transformations

in equation (1) was not his main objective. More specifically, in his 1887 paper, Voigt studied the

propagation of oscillating disturbances through an elastic uniform incompressible medium. His

basic equation was the homogeneous vector wave equation of the elastic theory of light. As usual

in those times, he considered the scalar components of this vector equation. According to Voigt

[1]:

“It is known that the differential equations for the oscillations of an elastic incom-

pressible medium read

∂2u

∂t2
= ω2

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

,
∂2v

∂t2
= ω2∆v,

∂2w

∂t2
= ω2∆w, (3)

where ω is the propagation velocity of the oscillations, or more precisely, the propa-

gation velocity of plane waves with constant amplitude.”

Voigt wrote ∂2u/∂t2 = ω2∆u for the first equation in (3), where ∆ is the Laplacian operator. The

wave of the elastic incompressible medium is represented by (u, v, w). With small changes, we are

following the original notation of Voigt’s paper. He also assumed the continuity equation: ∂u/∂x+

∂v/∂y + ∂w/∂z = 0. Voigt’s central idea was to transform equation (3) from the rest frame to

another frame moving with a constant velocity, and thus finding the formula for the Doppler effect.

Without providing any explanation, he wrote a set of linear transformations relating the space

coordinates (x, y, z) and the time t measured in the rest frame with the space coordinates (ξ, η, ζ)

and the time τ measured in the moving frame:

ξ = xm1 + yn1 + zp1 − αt, (4)

η = xm2 + yn2 + zp2 − βt, (5)

ζ = xm3 + yn3 + zp3 − γt, (6)

τ = t− (ax+ by + cz). (7)

Voigt introduced 15 unknown constants (m1, ..., a, ..., α, ...) in equations (4)-(7). Notice that γ is

not the gamma factor of special relativity. After transforming the first wave equation displayed in

(3), in which u = u(x, y, z, t), and using equations (4)-(7), Voigt obtained a large expression for

the transformed wave equation:

∂2(U)

∂τ 2
(1−ω2(a2+b2+c2))=ω2

{

∂2(U)

∂ξ2

(

m2

1
+n2

1
+p2

1
−
α2

ω2

)

+
∂2(U)

∂η2

(

m2

2
+n2

2
+p2

2
−
β2

ω2

)

+ ...

+2
∂2(U)

∂η∂ζ

(

m2m3 + n2n3 + p2p3 −
βγ

ω2

)

+...

}

. (8)
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Here (U) = (U)(ξ, η, ζ, τ ) is the transformed function corresponding to u = u(x, y, z, t). Thus,

he compared the transformed wave equation in equation (8) with the equation

∂2(U)

∂τ 2
= ω2

(

∂2(U)

∂ξ2
+
∂2(U)

∂η2
+
∂2(U)

∂ς2

)

, (9)

which exhibits the same form as the first equation appearing in (3). Voigt justified the valid-

ity of equation (9) with only four words: “as it must be” (or “da ja sein muss” in German).

Voigt’comparison of equations (8) and (9) allows him to obtain an algebraic system of 9 equations

containing 15 unknown constants (m1, ..., a, ..., α, ...). Some of these equations are: 1 − ω2(a2 +

b2 + c2) = m2

1
+ n2

1
+ p2

1
− α2/ω2, 1 − ω2(a2 + b2 + c2) = m2

2
+ n2

2
+ p2

2
− β2/ω2, ..., m2m3 +

n2n3 + p2p3 = βγ/ω2, ...

Voigt’s comparison among equations (8), (9) and the first equation displayed in equation (3)

can be better understood by considering the implied expression

∂2u

∂t2
− ω2

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

= K

(

∂2(U)

∂τ 2
− ω2

(

∂2(U)

∂ξ2
+
∂2(U)

∂η2
+
∂2(U)

∂ς2

))

. (10)

The parameter K in equation (10) is defined by K=m2

1
+n2

1
+p2

1
−α2/ω2. Equation (10) expresses

the covariance of the d’Alembertian of a scalar function defined in both (rest and moving) frames.

The typical argument of covariance can be now applied to equation (10): If the wave equation

∂2(U)/∂τ 2−ω2(∂2(U)/∂ξ2+∂2(U)/∂η2+∂2(U)/∂ς2)=0 is valid in the moving frame then it is

valid in the rest frame: ∂2u/∂t2−ω2(∂2u/∂x2+∂2u/∂y2+∂2u/∂z2)=0 since K 6=0. Therefore the

covariance of the homogeneous wave equation introduced by Voigt implied the form invariance

of this equation under inertial frames, and this is an application of what would be later called by

Einstein the first postulate of special relativity. When demanding covariance to the homogeneous

wave equation, Voigt assumed (without explicitly specifying it) the constancy of the speed of light

ω in both (rest and moving) frames. This constancy would be later called by Einstein the second

postulate of special relativity.

In order to solve his troublesome algebraic system of 9 equations with 15 unknowns, Voigt

made an assumption [1]: “supposed that α, β and γ [the components of the relative velocity be-

tween the rest and moving frames] are given, then we have 12 available constants, so we can

arbitrarily use three of them.” From this point the reading of Voigt’s paper becomes somewhat

difficult to follow. He re-defined variables and made a number of additional assumptions with the

purpose of finding the solution for his troublesome algebraic system. In essence, Voigt restricted

his calculations to work in the standard configuration in which the space coordinates (x1, y1, z1)
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and the time t are associated with the rest frame and the space coordinates (ξ1, η1, ζ1) and the time

τ are associated with the moving frame. He also wrote the x−component of the inter-frame ve-

locity as α = χ. At the end of his calculations, Voigt obtained the following set of transformations

ξ1 = x1 − χt, η1 = y1q, ζ1 = z1q, τ = t−
χx1
ω2

, (11)

where q =
√

1− χ2/ω2. If we identify (ξ1, η1, ζ1) with (x′, y′, z′); the time τ with the time t′;

(x1, y1, z1) with (x, y, z) and q with 1/γ (where γ is the Lorentz factor) then we can see that the

transformations in equation (11) are the same as those given in equation (1). Voigt then proceeded

to generalize equation (11) to be valid for an inter-frame velocity in three dimensions. The remain-

der of the paper was devoted to a study of the Doppler effect. Because our main concern here are

the transformations in equation (11), or equivalently, those in equation (1), and not the discussion

of the Doppler effect, let us stop here our review of Voigt’s 1887 paper.

Let us re-construct the original derivation of Voigt’s transformations following a modern and

simplified approach. We will see that what Voigt really did in his 1887 paper was to discover one

first example of the conformal symmetry of spacetime. Consider the scalar field F (x, y, z, t) in

the frame S satisfying the homogeneous wave equation:

∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2
−

1

c2
∂2F

∂t2
= 0. (12)

Consider the following set of transformations connecting the space coordinates (x′, y′, z′) and the

time t′ in the frame S ′ with the space coordinates (x, y, z) and the time t in the frame S:

x′ = k1x− vt, t′ = t− k2x, y′ = k3y, z′ = k4z, (13)

where k1, k2, k3 and k4 are constants to be determined and v the relative velocity between the

frames S and S ′. From equation (13) we can derive the transformation laws:

∂

∂y
= k3

∂

∂y′
, (14)

∂

∂z
= k4

∂

∂z′
, (15)

∂

∂x
= k1

∂

∂x′
−k2

∂

∂t′
, (16)

∂

∂t
=

∂

∂t′
−v

∂

∂x′
. (17)

It follows that

∂2

∂y2
= k2

3

∂2

∂y′2
, (18)
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∂2

∂z2
= k2

4

∂2

∂z′2
, (19)

∂2

∂x2
= k2

1

∂2

∂x′2
− 2k1k2

∂2

∂x′∂t′
+ k2

2

∂2

∂t′2
, (20)

∂2

∂t2
=

∂2

∂t′2
− 2v

∂2

∂t′∂x′
+ v2

∂2

∂x′2
. (21)

Using these transformation laws, equation (12) is transformed as follows
(

k2
1
−
v2

c2

)

∂2F

∂x′2
+ k2

3

∂2F

∂y′2
+ k2

4

∂2F

∂z′2
− (1− k2

2
c2)

1

c2
∂2F

∂t′2
+

(

2v

c2
− 2k1k2

)

∂F

∂x′∂t′
= 0, (22)

where now F (x′, y′, z′, t′) is defined in the frame S ′. Conformal covariance demands

(

k2
1
−
v2

c2

)

= k2
3
= k2

4
= (1− k2

2
c2),

v

c2
− k1k2 = 0. (23)

By making use of these relations, equation (22) becomes

(

k2
1
−
v2

c2

)

(

∂2F

∂x′2
+
∂2F

∂y′2
+
∂2F

∂z′2
−

1

c2
∂2F

∂t′2

)

= 0. (24)

From equations (12) and (24) we obtain the relation

∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2
−

1

c2
∂2F

∂t2
=

(

k2
1
−
v2

c2

)(

∂2F

∂x′2
+
∂2F

∂y′2
+
∂2F

∂z′2
−

1

c2
∂2F

∂t′2

)

. (25)

A solution for the system of algebraic equations displayed in equation (23) is given by

k1 = 1, k2 =
v

c2
, k3 =

1

γ
, k4 =

1

γ
, (26)

where γ=1/
√

1−v2/c2. Using equations (13) and (26), we get Voigt’s transformations given in

equation (1). Equation (25) with k1=1 can compactly be written as

✷
2 =

1

γ2
✷

′2, (27)

where ✷
2 ≡ ∇2−(1/c2)∂2/∂t2 is the d’Alembert operator in S and ✷

′2 ≡ ∇′2 − (1/c2)∂2/∂t′2

denotes this operator in S ′. In section 5 we will present an alternative derivation of Voigt’s trans-

formations based on the conformal covariance expressed in equation (27).

It is pertinent to mention a common and recurrent misunderstanding, which can be found, for

example, in a paper by Rott (See reply in Ref. [16]): “It is undisputed that Voigt discovered in

1887 the invariance of the wave equation with respect to the transformation that is named today

after Hendrik Lorentz.” Strictly speaking, Voigt’s transformations (equation (1)) are not equivalent

to the Lorentz transformations (equation (2)). Doyle has correctly pointed out (See Doyle W T
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in Ref. [16]): “What Voigt actually did was show that the wave equation is covariant under his

transformation —certainly a physical result.”

Authors of books have also incorrectly identified Voigt’s transformations with the Lorentz

transformations. Here are some examples. When referring to the Lorentz transformations, Whit-

taker [7] claimed: “It should be added that the transformation in question had been applied to the

equation of vibratory motions many years before by Voigt,...” Regarding the origin of the Lorentz

transformation, Sears and Brehme [3] wrote: “In point of fact W. Voigt (1850-1919) first published

the transformation in 1887.” Similarly, French [4] wrote: “...the Lorentz transformations had, in

essence, been discovered in 1887 by W. Voigt, who in that year published a theoretical paper about

the Doppler effect (which can be regarded as the problem of observing a wave motion from dif-

ferent inertial frames).” O’Rahilly [5] has also incorrectly identified Voigt’s transformations with

the Lorentz transformations. He pointed out: “The transformation is usually called by the name of

Lorentz. But we wish to point out ,..., that the formula was first explicitly given and fully employed

by W. Voigt in 1887.” On the other hand, Brown correctly pointed out [23]: “In his 1887 paper,

Voigt showed that coordinate transformations exist-specifically the Lorentz transformations mul-

tiplied by γ−1which preserve the form of the wave equations in the elastic theory of light.... It is

unclear precisely how Voigt meant the transformations to be interpreted, or why the multiplicative

factor γ−1 is what it is.”

In the next section we will discuss in detail the misunderstanding of considering equivalent the

Voigt and Lorentz transformations.

III. THE SCANT IMPACT OF VOIGT’S 1887 PAPER

We wish to highlight three important aspects of the first part of Voigt’s 1887 paper, which

could explain its scant impact among physicists of that time: (i) The main purpose of Voigt in his

1887 paper was not to propose a new set of spacetime transformations, which should replace the

well-established Galilean transformations, but simply to study the transformation of oscillating

disturbances through an elastic incompressible medium and deduce the formula for the Doppler

effect; (ii) The process by which Voigt derived a set of transformations that maintained covariance

of the wave equation was not discussed. As mentioned above, the only four words used by Voigt to

justify this covariance were “as it must be”; and (iii) He did not provide any physical interpretation

of his non-absolute time: t′ = t− vx/c2 nor did he say anything about the invariance of the speed
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of light c in inertial frames. Apparently, Voigt did not realize the great conceptual importance of

his transformations!

Regarding Voigt’s ideas developed in his 1887 paper, Hsu has pointed [21]: “If the physicists

of the time had been imaginative enough, they might have recognized the potential of these ideas

to open up a whole new view of physics.” We believe that a considerable number of physicists of

that time were imaginative enough and that they did not recognized the potential of Voigt’s 1887

paper because Voigt’s presentation in the first part of his paper obscured the significance of his

transformations.

Despite the great initial acceptance of special relativity in the beginnings of the 1900’s, Voigt

did not seem to have been interested in pointing out the introduction of his non-absolute time:

t′ = t − vx/c2. According to the standard account, Lorentz [27] was the first in introducing this

time in 1895 but with the name “local time.” The replacement of the absolute time by a non-

absolute time was a crucial idea in the construction of special relativity. Poincaré [29] recognized

the great conceptual importance of the local time by claiming that it was Lorentz’s “most ingenious

idea” (in French: “L’idée la plus ingénieuse a été celle du temps local”).

Moreover, evidence points out that Voigt was not substantially interested in promoting his

transformations among his contemporaries. For example, although Voigt had corresponded with

Lorentz since 1883, it does not seem that he mentioned his 1887 paper to Lorentz, at least dur-

ing the period 1887-1907. It was not until 1908 that Voigt sent his 1887 paper to Lorentz. In a

response letter, Lorentz wrote [30]:

“Of course I will not miss the first opportunity to mention, that the concerned trans-

formation and the introduction of a local time has been your idea.”

In a letter addressed to Wiechert in the year of 1911, Lorentz [31] mentioned again the priority

of Voigt in the discovery of the Lorentz transformations. It is also interesting to note that Lorentz

explicitly pointed out in his book [8] that his space-time transformation were first introduced by

Voigt. Lorentz wrote:

“In a paper ‘Öber das Dopplersche Princip,’ published in 1887 (Gött. Nachr., p. 41)

and which to my regret has escaped my notice all these years, Voigt has applied to

equations of the form (6) (§ 3 of this book)[△ψ−(1/c2)∂2ψ/∂t2=0] a transformation

equivalent to the formulae (287) and (288) [x′ = kl(x−wt), t′ = kl(t−wx/c2), y′ =

ly, z′= lz]. The idea of the transformations used above (and in § 44) might therefore
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have been borrowed from Voigt and the proof that it does not alter the form of the

equations for the free ether is contained in his paper.”

In this paragraph Lorentz pointed out two things: (i) that his transformations were equivalent to

those of Voigt and (ii) that Voigt’s transformations do not alter the form of the wave equation. The

transformations introduced by Lorentz: x′=kl(x−wt), t′=kl(t−wx/c2), y′= ly, z′= lz involve

both the “standard” Lorentz transformations (w=v, l=1 and k=γ) and the Voigt transformations

(w=v, l=1/γ and k=γ). The standard Lorentz transformations transform the scalar wave equa-

tion ✷
2F =0 into ✷

′2F =0 (a perfect invariance) and Voigt’s transformations transform ✷
2F =0

into ✷
′2F/γ2=0 (a form of covariance). In other words: the homogeneous scalar wave equation is

invariant under Lorentz transformations and covariant under Voigt’s transformations. This subtle

difference between invariance and covariance of the homogeneous wave equation didn’t seem to

have been relevant for Lorentz.

Because the Voigt and Lorentz transformations ultimately yield the form invariance of the

wave equation (in the case of Voigt’s transformations ✷
′2F/γ2 = 0 implies ✷

′2F = 0 because

1/γ2 6= 0), some authors have incorrectly identified the Lorentz transformations with Voigt’s

transformations. These authors seem to minimize the difference between covariance and invari-

ance of the wave equation. For example, when discussing the evolution and interpretation of the

Lorentz transformations, Pais [32] does not hesitate to say that Voigt was “the first to write down

Lorentz transformations [equations (2)].” He points out that wave equations of the type ✷
2φ = 0

“retains their form if one goes over the new space-time variables [equations (1)].” He states that

“These [equations (1)] are the Lorentz transformations [equations (2)] up to scale factor.” Pais’s

statement is incorrect because equations (1) transform ✷
2φ = 0 into ✷

′2φ/γ2 = 0 and not into

✷
′2φ=0.

It is fair to say that Lorentz always recognized Voigt’s 1887 paper. In 1914 he commented on a

paper by Poncaré and wrote [33]:

“These considerations published by myself in 1904, have stimulated Poincaré to write

his article on the dynamics of electron where he has given my name to the just men-

tioned transformation. I have to note as regards this that a similar transformation has

been already given in an article by Voigt published in 1887 and I have not taken all

possible benefit from it.”

Minkowski didn’t seem to have noted some difference between equations (1) and equations (2).
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In a physics meeting of 1908 he claimed (this comment of Minkowski appears the final section

(Discussion) of Bucherer’s paper given in Ref. [28]):

“I want to add that the transformations, which play the main role in the relativity

principle, were first mathematically discussed by Voigt in the year 1887.”

Voigt’s 1887 paper was cited by E. Kohl in 1903 in Annalen der Physik [10]. However, other

authors that constructed the special theory of relativity like Einstein and Poincaré did not noticed

Voigt’s 1887 paper.

The fact that Voigt’s paper remained unnoticed during the period 1887-1892, was clearly

pointed out by Pauli in his famous 1921 book on relativity [6]. He wrote :

“As long ago as 1887, in a paper still written from the point of view of the elastic

solid theory of light, Voigt mentioned that it is mathematically convenient to intro-

duce a local time t′ into a moving reference frames.... In this way the wave equation

△φ − (1/c2)∂2φ/∂t2 = 0 could be made to remain valid in the moving reference

frame, too. These remarks, however, remained completely unnoticed, and a similar

transformation was not again suggested until 1892 and 1895, when H. A. Lorentz

published his fundamental papers on the subject.”

Another 1921 book that mentioned the work of Voigt was that of Kopff [9].

As a recognition to Voigt, his 1887 paper was reprinted in 1915 in occasion of the tenth an-

niversary of the principle of relativity (See Ref. [35]). In connection with this recognition, Doyle

writes (See Doyle W T in Ref. [16]): “However, Voigt did live to see his [1887] paper chosen to be

reprinted in its entirety in the Physikalische Zeitschrift (a German Physics Today of his time) on

the occasion of what the editors called simply the tenth ‘birthday celebration of the principle of rel-

ativity.”’ In the reprinted version of his 1887 paper (See Ref. [35]), Voigt included some additional

comments, the second of them is particularly disconcerting. When referring to his transformations

[equation (11) in the present paper], he wrote:

“This is, except for the factor q which is irrelevant for the application, exactly the

Lorentz transformation of the year 1904.”

We know now that the factor q (our 1/γ in modern notation) is generally significant for applications

(Notice Voigt’s statement is correct for non-relativistic (v << c) applications because in this case
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q ≈ 1). Apparently, Voigt himself committed the same interpretative mistake as that of Lorentz

and Minkowski: he identified his transformations with the Lorentz transformations. Notice that

Voigt’s comment was made in 1915 when special relativity was already a well-established theory.

IV. THE CONNECTION BETWEEN THE VOIGT AND LORENTZ TRANSFORMATIONS

The relation between the Lorentz and Voigt transformations is transparently established using

four-dimensional spacetime notation. This relation is given in Ref. [20] and for completeness

we will review it here. Greek indices α, β, . . . run from 0 to 3; Latin indices i, j, . . . run from

1 to 3. Coordinates are labeled as xα = (x0, x1, x2, x3) = (ct, x, y, z) in the frame S and x′α =

(x′0, x′1, x′2, x′3)=(ct′, x′, y′, z′) in the frame S ′. Summation convention is adopted.

As is well-known, the Lorentz transformations in equation (2) can be written as

x′α = Λα
β x

β , (28)

where

Λα
β =





















γ −vγ/c 0 0

−vγ/c γ 0 0

0 0 1 0

0 0 0 1





















, (29)

is the Lorentz matrix. Voigt’s transformations in equation (1), on the other hand, can be written as

x′α = Vα
β x

β, (30)

where the Voigt matrix is given by

Vα
β =





















1 −v/c 0 0

−v/c 1 0 0

0 0 1/γ 0

0 0 0 1/γ





















. (31)

Clearly, the relation between the Lorentz and Voigt matrices is given by

Λα
β = γVα

β , (32)

i.e., the Lorentz matrix is proportional to the Voigt matrix. Using this proportionality we can infer

the properties of the latter from those of the former. The Lorentz matrices satisfy the relation
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Λα
θΛ

θ
β = δαβ , where δαβ is the Kronecker delta (See Refs. [36] and [37]). This means that Λθ

β is the

inverse of Λα
θ . This inverse can also be denoted as (Λ−1)θβ. From Λα

θΛ
θ
β = δαβ and equation (32) it

follows that

Vα
θ (γ

2Vθ
β) = δαβ . (33)

Therefore γ2Vθ
β can be interpreted as the inverse of Vα

θ . This inverse can also be denoted as

(V−1)θβ. In its explicit form, this inverse transformation reads

(V−1)θβ =





















γ2 −vγ2/c 0 0

−vγ2/c γ2 0 0

0 0 γ 0

0 0 0 γ





















. (34)

The Lorentz matrices are defined to be those satisfying Λµ
αηµνΛ

ν
β = ηαβ, where

ηαβ =





















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





















. (35)

It follows that the Voigt matrices can be defined as the set of matrices satisfying

Vµ
αγ

2ηµνV
ν
β = ηαβ. (36)

We can write equation (36) in the compact form: VTγ2ηV = η, where VT is the transpose ma-

trix of V (notice that V−1 = γ2VT ). Despite the close relation between the Lorentz and Voigt

matrices, the latter do not form a group [13]. To show this we consider two Voigt matrices

V1 and V2. We will investigate if their product V1V2 is also another Voigt matrix as required

by the closure property. We have VT

1
γ2
1
ηV1 = η and VT

2
γ2
2
ηV2 = η. Let V3 = V1V2. Thus

VT

3
γ2
3
ηV3=(VT

1
VT

2
)γ2

3
η(V1V2). If γ3=γ1γ2 then

VT

3
γ2
3
ηV3 = VT

1
γ2
1
(VT

2
γ2
2
ηV2)V1 = VT

1
γ2
1
ηV1 = η. (37)

From this equation it appears to be that the Voigt matrices satisfy the closure property. But this is

not so because the assumption γ3 = γ1γ2 is incorrect. It can be shown that (See, for example, Ref.

[36] p. 829): γ3 = γ1γ2(1 + v1v2/c
2). The Voigt matrices do not satisfy the closure property and

therefore the Voigt transformations do not form a group since two successive Voigt transformations
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do not yield another Voigt transformation. This makes them unattractive from a physical point of

view because the physical equivalence of the inertial frames is broken. As pointed out by Lévy-

Leblond [38]: “The physical equivalence of the inertial frames implies a group structure for the

set of all inertial transformations.”

In the low-velocity limit v<<c we have γ ≈ 1 and therefore

Λα
β ≈ Vα

β . (38)

The Lorentz and Voigt matrices coincide in the weakly relativistic regime of special relativity.

Consequently, the Lorentz and Voigt transformations coincide in this limit. The low-velocity limit

of Voigt’s transformations take the form

x′ = x− vt, t′ = t−
vx

c2
, y′ ≈ y, z′ ≈ z. (39)

Notice that the time transformation in equation (37) reduces to the Galilean transformation: t′ = t

only if the additional condition ct >>x is imposed. In the low-velocity limit we have γ3 ≈ γ1γ2

and then two sets of successive Voigt transformations yield another set of Voigt’s transformations,

and this satisfies the closure property. We then conclude that Voigt’s transformation approximately

form a group in the low-velocity limit v<<c. The main objection against Voigt’s transformations

is seen to disappear when considering low-velocities compared with the speed of light.

V. ALTERNATIVE DERIVATION OF VOIGT’S TRANSFORMATIONS

In this section we will demand the conformal covariance of the d’Alembert operator expressed

in equation (27) to obtain Voigt’s transformations. This derivation is given in Ref. [20] and for

completeness we will review it here again. Consider the standard configuration and equation (27)

expressed as

(

∂

∂x
−
1

c

∂

∂t

)(

∂

∂x
+
1

c

∂

∂t

)

+
∂2

∂y2
+
∂2

∂z2
=

1

γ2

(

(

∂

∂x′
−
1

c

∂

∂t′

)(

∂

∂x′
+
1

c

∂

∂t′

)

+
∂2

∂y′2
+
∂2

∂z′2

)

. (40)

By assuming linearity for the transformations of derivative operators, we can write

(

∂

∂x
−
1

c

∂

∂t

)

=
A

γ

(

∂

∂x′
−

1

c

∂

∂t′

)

,
(

∂

∂x
+
1

c

∂

∂t

)

=
A−1

γ

(

∂

∂x′
+

1

c

∂

∂t′

)

, (41)

∂

∂y
=

1

γ

∂

∂y′
,

∂

∂z
=

1

γ

∂

∂z′
. (42)

Insertion of these quantities into the left-hand side of equation (40) leads to an identity. The factor

A is independent of the derivative operators but can depend on the velocity v and A−1 = 1/A. In
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order to determine A, we demand that the expected linear transformation relating primed and un-

primed time-derivative operators should appropriately reduce to the corresponding Galilean trans-

formation [39]: ∂/∂t = ∂/∂t′ − v∂/∂x′. Our demand is consistent with a linear transformation

of the general form: ∂/∂t = F (v)(∂/∂t′ − v∂/∂x′), where F (v) depends on the velocity v so

that F (v)→ 1 when v << c. From this general transformation it follows that if ∂/∂t = 0 then

∂/∂t′=v∂/∂x′ because F (v) 6= 0. Using this result in equations (41) we get

∂

∂x
=
A

γ

(

∂

∂x′
−
v

c

∂

∂x′

)

,
∂

∂x
=
A−1

γ

(

∂

∂x′
+
v

c

∂

∂x′

)

. (43)

By combining these equations we can derive expressions for A and A−1,

A =

√

1 + v/c
√

1− v/c
, A−1 =

√

1− v/c
√

1 + v/c
, (44)

which can conveniently be written as

A = γ
(

1 +
v

c

)

, A−1 = γ
(

1−
v

c

)

. (45)

Using these relations in equation (41) we obtain
(

∂

∂x
−

1

c

∂

∂t

)

=
(

1 +
v

c

)(

∂

∂x′
−

1

c

∂

∂t′

)

,
(

∂

∂x
+

1

c

∂

∂t

)

=
(

1−
v

c

)(

∂

∂x′
+

1

c

∂

∂t′

)

. (46)

By adding and subtracting equations (46) we can obtain the corresponding transformation laws

connecting unprimed and primed operators, which are added to the transformation laws for ∂/∂y

and ∂/∂z, obtaining

∂

∂x
=

∂

∂x′
−
v

c2
∂

∂t′
,

∂

∂t
=
∂

∂t′
−v

∂

∂x′
,

∂

∂y
=

1

γ

∂

∂y′
,

∂

∂z
=

1

γ

∂

∂z′
. (47)

These relations are the Voigt transformations for derivative operators of the standard configuration.

The first two relations in equation (47) imply coordinate transformations of the form: x′ = x′(x, t)

and t′ = t′(x, t). To find the explicit form of these transformations we can use the first two relations

displayed in equation (47) to obtain

∂x′

∂x
= 1,

∂x′

∂t
= −v,

∂t′

∂t
= 1,

∂t′

∂x
= −

v

c2
. (48)

From the first relation in equation (48) it follows the equation (A): x′=x+g1(t), where g1(t) can

be determined (up to a constant) by deriving (A) with respect to the time t and using the second

relation in (51): ∂x′/∂t=∂g1(t)/∂t=−v. This last equality implies (B): g1(t)=−vt+x0, where

x0 is a constant. From (A) and (B) we obtain

x′ = x− vt+ x0. (49)
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The third relation in equation (48) implies (C): t′ = t+g2(x), where g2(x) can be obtained (up

to a constant) from deriving (C) with respect to x and using the last relation in equation (41):

∂t′/∂x=∂g2(x)/∂x=−v/c2. This last equality implies (D): g2(x)= −(vx/c2)+t0, where t0 is a

constant. From (C) and (D) we conclude

t′ = t−
vx

c2
+ t0. (50)

The origins of the frames S and S ′ coincide at t= t′=0. It follows that x0=0 and t0=0. In this

way we obtain the Voigt transformations for the x and t coordinates of the standard configuration:

x′ = x− vt, t′= t−
vx

c2
. (51)

The transformations for the y and z coordinates are easily derived. From the last two relations

in equation (50) we get ∂y′/∂y = 1/γ and ∂z′/∂z = 1/γ. They imply y′ = (y/γ) + y0 and

z′= (z/γ) + z0, where y0 and z0 are constants, which vanish because the origins of the frames S

and S ′ coincide at the time t= t′ = 0. Thus

y′ =
y

γ
, z′ =

z

γ
. (52)

Equations (51) and (52) are the Voigt transformations of the standard configuration. A direct

manipulation of equations (51) and (52) yields the corresponding inverse transformations [13]:

x = γ2(x′ + vt′), t = γ2
(

t′ +
vx′

c2

)

, y = γy′, z = γz′. (53)

VI. CONCLUSION

In the creation of special relativity, we traditionally find the names of Einstein, Poincaré,

Lorentz and Larmor. They appear to be the main actors. Voigt is relegated to be a minor player, in

the best of cases. But this tradition is not faithful to the history of physics. Although Voigt did not

derive the Lorentz transformations, he seems to have been the first in applying the postulates of

special relativity to a physical law: he demanded covariance to the homogeneous wave equation

with respect to inertial frames and assumed the invariance of the speed of light in these frames,

obtaining a set of transformations which introduced the non-absolute time t′ = t− vx/c2.

To conclude, we would like to point out that we are in agreement with Rott [15], who on the

centennial of Voigt’s 1887 paper, claimed that Voigt was a “Relativity’s forgotten figure.” He

wrote [15]: “...this year is also the centennial of a theoretical paper [Voigt’s 1887 paper] that is

16



largely forgotten, but has a certain role in the history of the theory of relativity even though it has

no documented impact on the actual historical development.”
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[10] Kohl E 1903 Über ein Integral der Gleichungen für die Wellenbewegung, welches dem Dopplerschen

Prinzipe entspricht Ann. Phys. 11 96–113 .

[11] Ives H E 1947 Historical Note on the Rate of a Moving Clock J. Opt. Soc. Am. 37 810–813.

17

http://en.wikisource.org/wiki/Translation:On_the_Principle_of_Doppler
https://ia800303.us.archive.org/18/items/electronstheory00lorerich/electronstheory00lorerich.pdf
http://dx.doi.org/10.1002/andp.19033160505
http://dx.doi.org/10.1364/JOSA.37.000810


[12] Gluckman A G 1968 Coordinate Transformations of W. Voigt and the Principle of Special Relativity

Am. J. Phys. 36 226–231.

[13] Gluckman A G Voigt 1976 Kinematics and Electrodynamic Consequences Found. Phys. 6 305–316.

[14] Wesley J P 1986 Michelson-Morley result, a Voigt-Doppler effect in absolute space-time

Found. Phys. 16 817–824.

[15] Rott N 1987 Relativity’s forgotten figure Phys. Today 40 11.

[16] Doyle W T 1988 Recognition for Woldemar Voigt Phys. Today 41, 102; see also the corresponding

reply by Rott N 1988 Phys. Today 41 102-103.

[17] Ernst A and Hsu J-P 2001 First Proposal of the Universal Speed of Light by Voigt in 1887 Chinese J.

Phys. 39 211–230.

[18] Masreliez C J 2008 Special relativity and inertia in curved spacetime Adv. Studies Theor. Phys. 2

795–815.

[19] Engelhardt W On the Origin of the Lorentz Transformation arXiv:1303.5309.

[20] Heras R The wave equation in the birth of spacetime symmetries arXiv:1407.3425.

[21] Hsu L 2006 A Broader View of Relativity: General Implications of Lorentz and Poincaré Invariance
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