
Eur. Phys. J. Plus         (2023) 138:329 
https://doi.org/10.1140/epjp/s13360-023-03914-5

Regular Art icle

The quantum phase of a dyon

Ricardo Herasa

School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Received: 29 July 2022 / Accepted: 19 March 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract When a dyon encircles an infinitely-long solenoid enclosing uniform electric and magnetic fields, its wave function
accumulates a duality-invariant quantum phase, which is topological because it depends on a winding number and is nonlocal
because the enclosed fields act on the dyon in regions where these fields vanish. Here, we derive this dyon phase and show how its
duality symmetry unifies the Aharonov-Bohm phase with its dual phase. We obtain the energy levels, the two-slit interference shift,
and the scattering amplitude associated with the duality-invariant quantum phase. Assuming that the dyon has spin 1/2, we show
that this spin does not affect the introduced phase. We argue that a spin 1/2 dyon has electric and magnetic moments, the former
being greater than the latter because of the Schwinger-Zwanziger quantisation condition.

1 Introduction

In quantum mechanics it is well-known that the wave function of a particle having the electric charge q and encircling an infinitely-
long solenoid enclosing a uniform magnetic flux Φm accumulates the Aharonov-Bohm (AB) phase [1]: δAB � nqΦm/(�c), which is
topological because it depends on the winding number n and is nonlocal because the magnetic field of the solenoid acts on the electric
charge in regions where this field is excluded. Less known is the fact that quantum mechanics also predicts that the wave function of
a particle having a magnetic charge g (a magnetic monopole) and encircling an infinitely-long solenoid enclosing a uniform electric
flux Φe accumulates the dual of the Aharonov-Bohm (DAB)1 phase [2, 3]: δDAB � −ngΦe/(�c), which is also topological because
it depends on the winding number n and is nonlocal because the electric field of the solenoid acts on the magnetic charge in regions
where this field vanishes. If we make the dual changes: q → g and Φm → −Φe into the AB phase then we obtain the DAB phase.

Given the phases δAB and δDAB, we could envision a more general phase δD by simply adding both phases: δD � δAB + δDAB, or
in more explicit terms,

δD � n

�c
(qΦm − gΦe). (1)

The picture of the electromagnetic configuration associated with the envisioned phase δD would consist of a dyon [6–8] with electric
charge q and magnetic charge g encircling an infinitely-long solenoid enclosing a uniform magnetic flux Φm and a uniform electric
flux Φe (see Fig. 1).

Put in other words, one could conjecture that quantum mechanics also predicts the existence of the phase δD, which has the
theoretical appeal of being duality invariant, i.e., the phase δD is invariant under the dual changes: q → g, g → −q, Φm → −Φe

and Φe → Φm , or more generally, under the U(1) duality transformations: q + ig � e−iθ (q ′ + ig′) and Φe + iΦm � e−iθ (Φ ′
e + iΦ ′

m),

where θ is an arbitrary angle.
On the other hand, the existence of the phase δD is supported by semi-classical considerations based on the recently discussed

correspondence between topological electromagnetic quantum phases and topological electromagnetic angular momenta [9, 10]. It
has been shown [9] that the configuration formed by an electric charge q encircling an infinitely-long solenoid enclosing a uniform
magnetic flux Φm accumulates an electromagnetic angular momentum Lq � nqΦm/(2πc), which can be considered as the classical
counterpart of the AB phase: δAB � nqΦm/(�c), being both quantities connected by2 δAB � 2πLq/�. Similarly, it has been shown
[10] that the configuration formed by a magnetic charge g encircling an infinitely-long solenoid enclosing a uniform electric flux Φe

accumulates an electromagnetic angular momentum Lg � −ngΦe/(2πc) and this can be considered as the classical counterpart of
the DAB phase δDAB � −ngΦe/(�c), being both quantities connected by δDAB � 2πLg/�. Moreover, it was also demonstrated [10]

1 Several physicists often refer to the Aharonov-Casher phase [4]: δAC � 4πμλe/(�c), in which a magnetic moment of magnitude μ moves around, and
parallel to, an infinitely long rod possessing the linear electric charge density λe, as the dual of the AB phase (see, for example, Ref. [5]). However, this
affirmation is formally incorrect because there is no consistent electromagnetic duality between electric charges and magnetic dipoles.
2 To our knowledge, the relation δAB � 2πLq/� was first pointed out by Maeda and Shizuya [11] and subsequently by [12].
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Fig. 1 A dyon encircling a dual solenoid enclosing electric and magnetic fluxes accumulates a duality-invariant quantum phase which is topological and
nonlocal

that a dyon encircling an infinitely-long solenoid enclosing uniform electric and magnetic fields accumulates the electromagnetic
angular momentum Lqg � n(qΦm−gΦe)/(2πc). Considering the relations δAB � 2πLq/� and δDAB � 2πLg/� we can conjecture
the validity of the relation δD � 2πLqg/�, which would imply the existence of the phase δD given in Eq. (1).

However, the formal quantum mechanical derivation of the duality-invariant phase δD is not as simple as it might seem at first
sight for the following reason: while the Hamiltonians associated to the Schrödinger equations that predict the phases δAB and δDAB

are easy to construct, the Hamiltonian corresponding to the Schrödinger equation that would predict the duality-invariant phase δD

is not easy to elucidate because there is no canonical (local) Lagrangian formulation of a dyon interacting with given electric and
magnetic fields [13, 14]. But this well-known problem does not preclude us to consider the idea of a nonlocal Lagrangian formulation
with the purpose to derive the phase δD.

In this paper we suggest a nonlocal Lagrangian for a dyon interacting with the electric and magnetic fields of an infinitely-long
“dual” solenoid enclosing a uniform magnetic flux Φm and a uniform electric flux Φe. We make use of the associated Hamiltonian
to construct the corresponding Schrödinger equation associated with a dyon in the region outside the dual solenoid. We then solve
this equation and show how the wave function of a dyon encircling the dual solenoid accumulates the duality-invariant quantum
phase δD. We point out that this phase is topological because it depends on the winding number n and is nonlocal because the fields
of the dual solenoid act on the dyon in a region where these fields are zero. We explicitly demonstrate how the duality symmetry of
the phase δD provides a unified model of the phases δAB and δDAB and suggest different physical interpretations of the AB phase.
We then obtain the energy levels, the two-slit interference shift, and the scattering amplitude associated with the phase δD. Next, we
discuss the role of the spin of the dyon and suggest that if the dyon is a fermion of spin 1/2, then the phase δD is insensitive to the
presence of the dyon spin. Finally, we argue that a spin 1/2 dyon has electric and magnetic moments and that former is greater than
the latter when considering the Schwinger-Zwanziger quantisation condition.

2 The potentials of a dual solenoid

Consider an infinitely-long dual solenoid of radius R that confines its electric and magnetic fields. We choose the z-axis to be the
axis of the dual solenoid and adopt Gaussian units as well as cylindrical coordinates (ρ, φ, z). The classical electromagnetism of
this configuration is discussed in detail in Ref. [10]. We will present here only the main results. The magnetic and electric fields are
given by

B � ΦmΘ(R − ρ)

πR2 ẑ, E � ΦeΘ(R − ρ)

πR2 ẑ, (2)

where Φm � πR2B and Φe � πR2E are the magnetic and electric fluxes through the dual solenoid, with B and E being the
magnitudes of the fields inside the dual solenoid, and Θ is the Heaviside step function. Inside the dual solenoid (ρ < R) we have
Θ � 1 and the fields take the constant values Bin � Φmẑ/(πR2) and Ein � Φeẑ/(πR2) while outside the dual solenoid (ρ > R)
we have Θ � 0 and the fields vanish Bout � 0 and Eout � 0. At the surface of the dual solenoid (ρ � R) the fields are not defined
due to the step function discontinuity. However, an appropriate regularisation yields B(R) � 0 and E(R) � 0, indicating that these
fields are continuous at ρ � R [10]. The fields of the dual solenoid are connected with their corresponding potentials by the relations
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B � ∇ × A and E � −∇ × C, where A is the magnetic vector potential and C is the electric vector potential. If we adopt the
Coulomb gauge conditions ∇ · A � 0 and ∇ · C � 0 these potentials can be written as [10]

A � Φm

2π

[
Θ(ρ − R)

ρ
+

ρΘ(R − ρ)

R2

]
φ̂, C � −Φe

2π

[
Θ(ρ − R)

ρ
+

ρΘ(R − ρ)

R2

]
φ̂. (3)

Inside the dual solenoid (ρ < R) we have Θ(ρ − R) � 0 and Θ(R − ρ) � 1 and the potentials in Eq. (3) reduce to Ain �
ρΦm/(2πR2)φ̂ and Cin � −ρΦe/(2πR2)φ̂. These potentials satisfy the relations ∇ × Ain � Φmẑ/(πR2) and −∇ × Cin �
Φeẑ/(πR2) in agreement with the expressions for the constant magnetic and electric fields inside the dual solenoid. Outside the dual
solenoid (ρ > R) we have Θ(ρ − R) � 1 and Θ(R − ρ) � 0 and the potentials in Eq. (3) reduce to

Aout � Φm

2π

φ̂

ρ
, Cout � −Φe

2π

φ̂

ρ
, (4)

which satisfy ∇ × Aout � 0 and −∇ × Cout � 0 in agreement with the value of the fields outside the dual solenoid. At the surface
of this solenoid (ρ � R), the potentials are not defined due to the discontinuity of the step function. However, after an appropriate
regularisation it can be shown that A(R) � Φmφ̂/(2πR) and C(R) � −Φeφ̂/(2πR), indicating that the potentials are continuous
at ρ � R [10]. Since the potentials Aout and Cout are irrotational, then they can be expressed as

Aout � ∇χ, Cout � ∇ξ, (5)

where ξ � −Φeφ/(2π ) and χ � Φmφ/(2π ) are multi-valued functions, i.e., the functions ξ and χ violate the Schwarz integrability
condition according to which the crossed second partial derivatives applied to ξ and χ do not commute: (∂ i∂ j − ∂ j∂ i )ξ �� 0 and
(∂ i∂ j − ∂ j∂ i )χ �� 0, where index notation has been adopted and summation of repeated indices is understood (see, for example,
Refs. [15] and [16] for a discussion of this criteria of multi-valued functions in the context of the AB effect and the Dirac monopole,
respectively).

3 Hamiltonian formulation

The classical interaction of the fields of the dual solenoid with a non-relativistic dyon of mass m and having the charges q and g is
described by the generalised Lorentz force

F � q

(
E +

ẋ
c

× B
)

+ g

(
B − ẋ

c
× E

)
, (6)

where ẋ � dx/dt is the velocity of the dyon and F � mẍ with ẍ � d2x/dt2 being the dyon’s acceleration. When one tries to
construct a Hamiltonian associated with the generalised Lorentz force, we have to face the fact that there is no canonical (local)
Hamiltonian that yields the generalised Lorentz force in Eq. (6) [13, 14]. This seems to be an impossibility of the standard Lagrangian
and Hamiltonian treatments, which shows the limitation of these methods for certain types of forces. In other words, not all forces of
the form F � mẍ can be obtained from a local Lagrangian or Hamiltonian.

However, this inconvenience does not prevent us from looking for a specific nonlocal Hamiltonian that could lead to the force in
Eq. (6). With this purpose, consider the nonlocal Lagrangian

L(x; x0, ẋ) � mẋ2

2
+
ẋ
c

· [qA(x) + gC(x)] +
∫ x

x0

[gB(x) + qE(x)] · dx′, (7)

where the fields E and B are the fields of the dual solenoid given by Eq. (2) and the corresponding potentials A and C are given by
Eq. (3). The line integral in the Lagrangian is taken along a fixed reference point x0 to the variable point x representing the position
of the dyon. This line integral accounts for a nonlocal term in the Lagrangian in that this term depends on the values at x and x0. In
Appendix A, we show that the corresponding Euler-Lagrange equations yield the force

F � q

(
E +

ẋ
c

× B
)

+ g

(
B − ẋ

c
× E

)
+ Fs, (8)

where Fs is a singular nonlocal term defined only on the surface of the dual solenoid and given by

Fs � κ(z0 − z)δ(ρ − R)ρ̂, (9)

where κ � (qΦe + gΦm)/(πR2). This singular surface term is shown to vanish after an appropriate regularisation. First, we observe
that if the dyon is not on the surface of the dual solenoid (ρ �� R) then Fs � 0. If the dyon approaches infinitely close to the dual
solenoid (ρ → R) then Fs � 0 because lim δ(R − ρ) � 0 as ρ → R. On the other hand, if the dyon is on the surface of the dual
solenoid (ρ � R) then Fs becomes singular. However, we may treat this singularity with a regularisation of Eq. (9). This is done by
letting ρ → ρ + ε where ε > 0 is an infinitesimal quantity, obtaining

Fs � κ (z0 − z) lim
ε→0

δ[(ρ + ε) − R]ρ̂. (10)
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When ρ � R we obtain

Fs � κ (z0 − z) lim
ε→0

δ(ε)ρ̂ � 0, (11)

because lim δ(ε) � 0 as ε → 0. We conclude that singular term Fs vanishes in all space and therefore the nonlocal Lagrangian
in Eq. (7) yields the correct expression for the generalised Lorentz force. Using Eq. (7) we obtain the canonical momentum
∂L/∂ ẋ � p � mẋ + (qA + gC)/c which gives ẋ � [p − (qA + gC)/c]/m. This result and H � p · ẋ − L gives the corresponding
nonlocal Hamiltonian

H (x; x0,p) � 1

2m

(
p − 1

c
[qA(x) + gC(x)]

)2

−
∫ x

x0

[gB(x) + qE(x)] · dx′. (12)

In the region outside the dual solenoid (ρ > R), we have Bout � 0 and Eout � 0 while Aout �� 0 and Cout �� 0, and therefore the
nonlocal Hamiltonian in Eq. (12) reduces to the local form

H � 1

2m

(
p − 1

c
(qAout + gCout)

)2

. (13)

Interestingly, the Hamiltonian in Eq. (12) is globally nonlocal but can be local if it is considered in the region outside the dual
solenoid. The local Hamiltonian in Eq. (13) is suitable to describe the quantum mechanics of a dyon outside the dual solenoid as
we will see in the next section.

4 The quantum phase of a dyon

Consider a non-relativistic and spinless dyon encircling the dual solenoid (see Fig. 1). The canonical substitution p → −i�∇ in
Eq. (13) gives the corresponding time-dependent Schrödinger equation

i�
∂Ψ

∂t
� 1

2m

(
− i�∇ − 1

c
(qAout + gCout)

)2

Ψ + VΨ, (14)

where V is a potential associated with a mechanical force that keeps the dyon encircling the dual solenoid. The nature of this force
is not relevant for our analysis as long as it keeps the dyon encircling the dual solenoid.3 Since the vector potentials in Eq. (14)
can be written as the gradients of scalar functions as seen in Eq. (5), then a solution of Eq. (14) can be obtained by multiplying the
solution Ψ0 which satisfies Eq. (14) when Aout � 0 and Cout � 0, by a suitable phase factor

Ψ (x, t) � ei/(�c)
∫
Γ (qAout+gCout)·dx′

Ψ0(x, t), (15)

where the line integral in the phase is taken along the dyon path Γ from a fixed reference point O to the variable point x. Equation (15)
assumes that the points O and x never lie on the dual solenoid while the path Γ never crosses it. As the dyon continuously encircles
the dual solenoid, it follows that any dyon path Γ can be decomposed as Γ � C + γ where C is any closed path that accounts for
the number of times the dyon encircles the dual solenoid and γ is any non-closed path that accounts for the open trajectory that the
dyon takes before completing another turn around the dual solenoid. It is pertinent to say that a similar decomposition was discussed
in the context of the AB phase [15]. It then follows that the line integral in the phase in Eq. (15) can be written as∫

Γ

(qAout + gCout) · dx′ �
∮
C

(qAout + gCout) · dx′ +
∫

γ

(qAout + gCout) · dx′. (16)

To evaluate the circulation let us consider the following result demonstrated in Ref. [10]:∮
C

(Aout + Cout) · dx′ �
{
n(Φm − Φe) if C encloses the dual solenoid
0 otherwise

(17)

where n is the winding number of the path C. Using Eqs. (16) and (17) we can write

Ψ (x, t) �
[
ein(qΦm−gΦe)/(�c)

]
ei/(�c)

∫
γ (qAout+gCout)·dx′

Ψ0(x, t), (18)

which states that after the dyon takes n turns around the dual solenoid, its wave function picks up the phase factor ein(qΦm−gΦe)/(�c),

and it accumulates the phase

δD � n

�c
(qΦm − gΦe). (19)

3 We should note that many treatments on the AB phase do not include a potential V associated with a force that keeps the particle with electric charge q
moving around the magnetic solenoid. This is because the inclusion of such a potential is not necessary for the derivation of the AB phase. Similarly, the
derivation of the phase δD does not require the inclusion of a potential V . However, we have included this potential in Eq. (14) for completeness in the
description of the system.
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The phase δD is topological because it depends on a winding number n, which identifies with the number of times the dyon encircles
the dual solenoid. The phase δD also reflects a nonlocal interaction in that the fields of the dual solenoid act on the dyon in a region
for which these fields are zero. A further feature of the phase δD is its electromagnetic duality. This symmetry and some of its
consequences will be discussed in the next section.

5 Duality symmetry of the quantum phase δD

It is easy to see that the phase δD in Eq. (19) is invariant under the simultaneous application of the set of duality transformation of
charges {q → g, g → −q} and the set of duality transformations of fluxes {Φm → −Φe, Φe → Φm}. We note that both sets of
transformations are independent because the charges q and g of the dyon are specified independently from the fluxes Φe and Φm

of the dual solenoid. Accordingly, the duality symmetry of the phase δD corresponds to a dyon/dual-solenoid composite. We can
generalise the discrete duality symmetry of the phase δD through the set of U(1) electromagnetic duality transformations given by

q + ig � e−iθ (q ′ + ig′), Φe + iΦm � e−iθ (Φ ′
e + iΦ ′

m), (20)

where θ is an arbitrary real angle. The transformations in Eq. (20) can explicitly be written as

q � q ′ cos θ + g′ sin θ, g � −q ′ sin θ + g′ cos θ, (21)

Φe � Φ ′
e cos θ + Φ ′

m sin θ, Φm � −Φ ′
e sin θ + Φ ′

m cos θ, (22)

and their corresponding inverse transformations read

q ′ � q cos θ − g sin θ, g′ � q sin θ + g cos θ, (23)

Φ ′
e � Φe cos θ − Φm sin θ, Φ ′

m � Φe sin θ + Φm cos θ. (24)

Using Eqs. (21) and (22) we obtain the duality invariant relation

qΦm − gΦe � q ′Φ ′
m − g′Φ ′

e. (25)

Considering this relation we can directly see that the phase δD is duality invariant:

δD � n

�c
(qΦm − gΦe) � n

�c
(q ′Φ ′

m − g′Φ ′
e) � δ′

D, (26)

which shows that the phase δD is invariant under the continuous duality symmetry specified by the transformations in Eq. (20).
By exploiting the arbitrariness of the angle θ , we can show that the phase δD � n(qΦm − gΦe)/(�c) unifies the AB phase
δAB � nqΦm/(�c) and the DAB phase δDAB � −ngΦe/(�c).

We have two procedures to obtain δAB from δD. In the first procedure, we assume that all dyons have the same ratio of magnetic
to electric charge: g′/q ′� constant. Since θ is arbitrary, we can fix this angle to satisfy

g′

q ′ � tan θ, (27)

which implies θ � tan−1(g′/q ′). The condition in Eq. (27) and the second transformation in Eq. (21) imply the vanishing of the
magnetic charge g of the dyon

g � −q ′ sin θ + g′ cos θ � −q ′ sin

[
tan−1

(
g′

q ′

)]
+ g′ cos

[
tan−1

(
g′

q ′

)]

� − g′√
(g′/q ′)2 + 1

+
g′√

(g′/q ′)2 + 1
� 0, (28)

where we have used the trigonometric relation sin[tan−1(a/b)] � a/(b
√

(a/b)2 + 1) together with cos[tan−1(a/b)] �
1/

√
(a/b)2 + 1. Using Eq. (28) the transformations in Eq. (23) become

q ′ � q cos θ, g′ � q sin θ. (29)

Using Eqs. (29) and (22) it follows

q ′Φ ′
m − g′Φ ′

e � q(−Φ ′
e sin θ + Φ ′

m cos θ ) � qΦm. (30)

Using Eq. (30) the phase δD reduces to the phase δAB for the angle specified by Eq. (27)

δD �
[
n(q ′Φ ′

m − g′Φ ′
e)

�c

]
θ�tan−1(g′/q ′)

� nqΦm

�c
� δAB. (31)
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In the second procedure, we assume that the ratio of the electric to magnetic fluxes is a constant quantity. Since θ is arbitrary, we
can fix this angle to satisfy

Φ ′
e

Φ ′
m

� − tan θ, (32)

which implies θ � tan−1(−Φ ′
e/Φ

′
m). The condition in Eq. (32) and the first transformation in Eq. (22) imply the vanishing of the

electric flux Φe of the dual solenoid

Φe � Φ ′
e cos θ + Φ ′

m sin θ � Φ ′
e cos

[
cot−1

(
− Φ ′

m

Φ ′
e

)]
+ Φ ′

m cos

[
cot−1

(
− Φ ′

m

Φ ′
e

)]

� Φ ′
e√

(Φ ′
e/Φ

′
m)2 + 1

− Φ ′
e√

(Φ ′
e/Φ

′
m)2 + 1

� 0, (33)

where we have used the trigonometric relation cos[cot−1(−a/b)] � 1/
√

(b/a)2 + 1 together with sin[cot−1(−a/b)] �
−b/(a

√
(b/a)2 + 1), and thus the transformations in Eq. (24) become

Φ ′
e � −Φm sin θ, Φ ′

m � Φm cos θ, (34)

which combine with the transformations in Eq. (21) to yield the result

q ′Φ ′
m − g′Φ ′

e � (q ′ cos θ + g′ sin θ )Φm � qΦm. (35)

Equation (35) implies that the phase δD originates the phase δAB for the angle specified by Eq. (32)

δD �
[
n(q ′Φ ′

m − g′Φ ′
e)

�c

]
θ�tan−1(−Φ ′

e/Φ
′
m)

� nqΦm

�c
� δAB. (36)

Following similar procedures to those used to obtain Eqs. (31) and (36), we can show the results

δD �
[
n(q ′Φ ′

m − g′Φ ′
e)

�c

]
θ�cot−1(−g′/q ′)

� −ngΦe

�e
� δDAB, (37)

δD �
[
n(q ′Φ ′

m − g′Φ ′
e)

�c

]
θ�cot−1(Φ ′

e/Φ
′
m )

� −ngΦe

�c
� δDAB, (38)

for the fixed angles θ � cot−1(−g′/q ′) and θ � cot−1(Φ ′
e/Φ

′
m), which are two angles that allow us to derive the phase δDAB from

the phase δD.
We can now draw the lessons we have learned about the electromagnetic duality of the phase δD. From Eqs. (31) and (36), and

Eqs. (37) and (38) we can see how the U(1) duality symmetry of the phase δD shows its unifying property: for the angle defined by
θ � tan−1(g′/q ′) the magnetic charge of the dyon vanishes g � 0 and therefore the phase δD reduces to the AB phase δAB, whereas
for the angle defined by θ � tan−1(−Φ ′

e/Φ
′
m) the electric flux of the dual solenoid vanishes Φe � 0 and the phase δD also reduces

to the AB phase δAB. Similarly, for the angle θ � cot−1(−g′/q ′) the electric charge of the dyon vanishes q � 0 and the phase δD

reduces to the DAB phase δDAB, whereas for the angle θ � cot−1(Φ ′
e/Φ

′
m) the magnetic flux of the dual solenoid vanishes and the

phase δD also reduces to the DAB phase δDAB. Accordingly, we may write in a slightly different notation

δD(θ ) =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δD(θ1) � δAB, θ1 � tan−1
(
g′

q ′

)

δD(θ2) � δAB, θ2 � tan−1
(

− Φ ′
e

Φ ′
m

)

δD(θ3) � δDAB, θ3 � cot−1
(

− g′

q ′

)

δD(θ4) � δDAB, θ4 � cot−1
(

Φ ′
e

Φ ′
m

)
(39)

Equation (39) shows that the phase δD depends on the angle θ , i.e., δD � δD(θ ), but when we fix this angle for the values specified
by θ1 and θ2, then this phase reduces to the AB phase δAB, whereas if we fix the angle for the values specified by θ2 and θ3, the
phase δD becomes the DAB phase δDAB. This unifying property is represented in Fig. 2.
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Fig. 2 The duality symmetry of the phase δD(θ ) provides a unified model of the AB and DAB phases. For the angle defined either by θ1 � tan−1(g′/q ′) or
θ2 � tan−1(−Φ ′

e/Φ
′
m ), the phase δD(θ ) becomes the AB phase δAB, and for the angle θ defined either by θ3 � cot−1(−g′/q ′) or θ4 � cot−1(Φ ′

e/Φ
′
m ), the

phase δD(θ ) becomes the DAB phase δDAB

Table 1 Interpretations of the AB phase supported by electromagnetic duality. In the standard nonlocal interpretation the magnetic flux Φm of the solenoid
has a nonlocal action on the electric charge q. In a first dual interpretation the magnetic flux Φm has a nonlocal action on the electric charge q ′ � q cos θ and
magnetic charge g′ � q sin θ of a dyon. In a second dual interpretation the fluxes Φ ′

m � Φm cos θ and Φ ′
e � −Φm sin θ of a dual solenoid have a nonlocal

action on the electric charge q

Interpretation AB phase

Standard (nonlocal) δAB � n
qΦm

�c

Dual 1 (nonlocal)
δAB � n

Φm
√
q ′2 + g′2
�c

Dual 2 (nonlocal)
δAB � n

q
√

Φ ′2
e + Φ ′2

m

�c

6 Interpretations of the Aharonov-Bohm phase in the light of duality

Electromagnetic duality allows different interpretations of the AB phase. To see this, consider Eq. (29) which holds when g � 0
and implies the beautiful relation

q �
√
q ′2 + g′2. (40)

Multiplying this equation by nΦm/(�c), we obtain an alternative expression for the AB phase

δAB � n
qΦm

�c
� n

√
q ′2 + g′2 Φm

�c
. (41)

According to this expression, the AB phase can be originated either by the nonlocal action of the magnetic flux Φm on the charge q
(first equality) or by the nonlocal action of the magnetic flux Φm on a dyon having the electric charge q ′ � q cos θ and the magnetic
charge g′ � q sin θ (second equality). The first equality in Eq. (41) gives the usual nonlocal interpretation of the AB phase (see,
for example, Ref. [10] for a discussion of this interpretation), whereas the second equality gives a nonlocal interpretation based on
electromagnetic duality.

Analogously, from Eq. (34), which holds when Φe � 0, it follows the duality-invariant relation

Φm �
√

Φ ′2
e + Φ ′2

m (42)

Multiplying this equation by nq/(�c) it follows

δAB � n
qΦm

�c
� n

q
√

Φ ′2
e + Φ ′2

m

�c
. (43)

This expression tells us that the AB phase can be originated either by the nonlocal action of the magnetic flux Φm on the charge
q (first equality) or by the nonlocal action of the fluxes Φ ′

e � −Φm sin θ and Φ ′
m � Φm cos θ of a dual solenoid on the electric

charge q. The first equality in Eq. (43) gives the usual nonlocal interpretation of the AB phase, whereas the second equality gives a
second nonlocal interpretation supported by electromagnetic duality. The standard nonlocal interpretation of the AB phase and the
interpretations supported by the second equalities in Eqs. (41) and (43) are shown in Table 1. We note that similar interpretations
hold for the phase δDAB.

What do we make of Eqs. (41) and (43)? The lesson we can draw here is that electromagnetic duality shows that it is a matter of
convention to speak of electric charges and magnetic fluxes, and not of dyons and dual fluxes. Conventionally, we say that a charged
particle has the electric charge q �� 0 and the magnetic charge g � 0, but with equal right, we can say that a charged particle has the
electric charge q ′ � q cos θ and the magnetic charge g′ � q sin θ with θ specified by Eq. (27). Analogously, we say conventionally
that a flux tube is specified by the magnetic flux Φm �� 0 and the electric flux Φe � 0, but with equal right, we can say that a flux
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tube has the magnetic flux Φ ′
m � Φm cos θ and the electric flux Φ ′

e � −Φm sin θ with θ specified by Eq. (32). In this regard, duality
allows equivalent descriptions of the same theory.

7 Energy levels, two-slit interference shift, and scattering amplitude

The similarity between the Hamiltonian in Eq. (13) and the AB Hamiltonian due to a particle with charge q and mass M propagating
outside an infinitely-long solenoid can be exploited to obtain some relevant quantities associated with the phase δD . To see this,
consider the AB Hamiltonian operator

ĤAB � 1

2M

(
− i�∇ − q

c
Aout

)2

+ V . (44)

This operator can be written as

ĤAB � 1

2M

(
− i�∇ − Lq∇φ

)2

+ V, (45)

where Lq � qΦm/(2πc) is the electromagnetic angular momentum of the configuration formed by a charge encircling an infinitely-
long solenoid [9]. Consider now the Hamiltonian operator

ĤD � 1

2m

(
− i�∇ − 1

c
(qAout + gCout)

)2

+ V, (46)

which corresponds to the Schrödinger equation in Eq. (14). We can write this operator as

ĤD � 1

2m

(
− i�∇ − Lqg∇φ

)2

+ V, (47)

where Lqg � (qΦm − gΦe)/(2πc) is the electromagnetic angular momentum of the configuration formed by a dyon encircling an
infinitely-long dual solenoid [10]. We observe that ĤAB in Eq. (44) and ĤD in Eq. (47) have the same form modulo that the former
involves Lq and M and the latter Lqg and m. It then follows that we can obtain the quantum effects corresponding to the operator
ĤD from the quantum effects associated with the operator ĤAB by making the replacements

Lq → Lqg, M → m. (48)

These replacements provide a simple approach through which we can obtain quantities associated to the dyon phase δD from
quantities associated to the AB phase δAB. Here we will use this method in three specific examples: (i) the energy levels of a dyon
encircling the dual solenoid, (ii) the two-slit interference shift due to dyons propagating outside the dual solenoid, and (iii) the
scattering amplitude due to dyons propagating outside the dual solenoid. We will then see how the results (i)-(iii) hold in the limit
of a vanishing radius of a dual solenoid, i.e., a dual flux line.

7.1 Energy Levels

The energy levels of the configuration formed by an electric charge encircling an infinitely-long solenoid of radius R and whose
motion is constrained in a circle of fixed radius b are well-known and can be expressed in terms of its associated electromagnetic
angular momentum as

Eμ � �
2

2Mb2

(
μ − Lq

�

)2

, (49)

where μ is an integer. If we make the substitutions in Eq. (48) into Eq. (49) and insert explicitly Lqg � (qΦm − gΦe)/(2πc), then
we obtain the energy levels

Eμ � �
2

2mb2

(
μ − (qΦm − gΦe)

2π�c

)2

, (50)

which correspond to the configuration formed by a dyon encircling a dual solenoid (see Fig. 3).

7.2 Two-slit interference shift

Consider a two-slit interference effect in which identical particles having the electric charge q propagate from a source, pass through
two slits on a first screen and are detected on a second screen. If an infinitely-long solenoid that confines its magnetic field is placed
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Fig. 3 The energy levels of the configuration formed by a dyon encircling an infinitely-long solenoid whose motion is constrained in a circle of fixed radius
b depends on the confined electric and magnetic fluxes even though the dyon lies in a region inaccessible to these fluxes

Fig. 4 Quantum interference effect of dyons. Dashed lines indicate dyon paths without the dual solenoid and continuous lines indicate dyon paths in the
presence of the dual solenoid. The interference pattern is shifted by the amount ΔD

between the two screens then there is an extra shift detected on the second screen. This shift has been calculated in detailed by Kobe
[17] and in terms of the electromagnetic angular momentum can be written as

�AB � Lλ

d�
Lq , (51)

where d is the distance between the two slits on the first screen, L is the distance between the two screens, and λ � h/(mv) is the de
Broglie wavelength of the electrically charged particle having the velocity v. If we make the substitutions in Eq. (48) into Eq. (50)
and insert explicitly Lqg � (qΦm − gΦe)/(2πc) then we obtain the shift

�D � Lλ

2πd

(q�m − g�e)

�c
, (52)

which correspond to the two-slit interference shift due to identical dyons propagating outside a dual solenoid (see Fig. 4), where
now λ � h/(mv) is the de Broglie wavelength of the dyon.

7.3 Scattering amplitude

Consider a particle with charge qwhose wave function is being scattered in the x−y plane outside an infinitely-long and impenetrable
cylindrical shell of radius R and centred along the z-axis. Inside the impenetrable cylindrical shell lies an infinitely-long solenoid of
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radius R that confines its magnetic field. Afanasiev [18] has calculated the corresponding scattering amplitude owed by the confined
magnetic flux, which can be written in terms of the electromagnetic angular momentum as

fAB(φ) �
∞∑

μ�−∞

eiμφ

√
2π ik

[
H (2)

|μ| (kR)

H (1)
|μ| (kR)

− eiπ (|μ|−|μ−Lq/�|) H
(2)
|μ−Lq/�|(kR)

H (1)
|μ−Lq/�|(kR)

]
, (53)

where H (1)
|μ| is the Hankel functions of the first kind, H (2)

|μ| is the Hankel function of the second kind, μ is an integer, and k � √
2ME/�2

is the magnitude of the wave vector with E being the energy associated to the corresponding time-independent Schrödinger equation.
Using Eq. (48) in Eq. (53) and inserting Lqg � (qΦm − gΦe)/(2πc), we obtain the scattering amplitude

fD(φ) �
∞∑

μ�−∞

eiμφ

√
2π ik

[
H (2)

|μ| (kR)

H (1)
|μ| (kR)

− eiπ (|μ|−|μ−(qΦm−gΦe)/(2π�c)|) H
(2)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

H (1)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

]
, (54)

which correspond to a dyon scattered in x − y plane outside a dual solenoid (see Fig. 5), where k � √
2mE/�2 is the magnitude

of the wave vector of the dyon with E denoting the energy associated to the corresponding time-independent Schrödinger equation.
The corresponding differential scattering cross section dσ/dΩ is related to scattering amplitude by dσ/dΩ � | fD|2, where σ is the
total cross section and Ω the associated solid angle by which the dyon’s wave function scatters into. Using Eq. (54) this differential
scattering cross section is given by

dσ

dΩ
� 1

2πk

∣∣∣∣∣
∞∑

μ�−∞

H (2)
|μ| (kR)

H (1)
|μ| (kR)

− eiπ (|μ|−|μ−(qΦm−gΦe)/(2π�c)|) H
(2)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

H (1)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

∣∣∣∣∣
2

. (55)

Equation (55) is admittedly cumbersome. However, we will see in the next subsection that when we assume a dual solenoid of
vanishing radius R → 0 the result in Eq. (55) considerably simplifies.

7.4 When the radius of the dual solenoid tends to zero: the dual flux line

The results of this section assume that the dual solenoid has a finite radius R. The question then arises: are these results valid when
the radius tends to zero?, i.e., for the case of a dual flux line. The answer is in the affirmative. Furthermore, the assumption of a dual
flux line considerably simplifies the cumbersome expression in Eq. (55) which holds for a dual solenoid of finite radius.

As R → 0 the fields of the dual solenoid become confined along a line of singularity localised on the z−axis such that
B � Φmδ(ρ)ẑ/(2πρ) and E � Φeδ(ρ)ẑ/(2πρ), where now the fluxes should be defined as Φm � 4πλm and Φe � 4πλe, with
λm being the magnetic dipole moment density per unit length and λe the electric dipole moment density per unit length. However,
outside the dual flux line the corresponding vector potentials Aout and Cout have the same form as those in Eq. (4), modulo the
appropriate substitution of the corresponding constant fluxes. Accordingly, for the case of a dual flux line, the Hamiltonian operator
in Eq. (46) remains unchanged and therefore the derived quantities from this operator, such as the phase δD, the energy levels in
Eq. (50), the interference shift in Eq. (52), and the scattering amplitude in Eq. (54), all remain unchanged. In particular, for the case
of the scattering amplitude, the assumption of a dual flux line considerably simplifies the cumbersome expression in Eq. (54). In
Appendix B we show that the scattering amplitude due to the wave function of a dyon scattered in the x − y plane outside the dual
flux line reads

fD(φ) � −2i e−i Nφ

√
2π ik

[
sin[π(qΦm − gΦe)/(2π�c)]

eiφ − 1

]
, (56)

where N is an integer and we have assumed φ �� 0 and φ �� 2π because there is a discontinuity on these points. Using the relation
| fD|2� dσ/dΩ , we obtain the differential scattering cross section

dσ

dΩ
� sin2[(qΦm − gΦe)/(2�c)]

2πk sin2(φ/2)
. (57)

When g � 0, Φe � 0 and q � e, with e being the electron’s charge, and when we make the substitution k → ke, where ke is the
magnitude of the wave vector of the electron’s wave function, then Eq. (57) reduces to the reported scattering cross section for a
non-relativistic electron propagating outside a magnetic flux line [19–23].

8 On the spin of the dyon

The idea that the dyon has spin has been discussed very little in the literature. Some authors postulate a Dirac equation for a dyon
[24–26] and thus assume that a dyon is a spin 1/2 fermion. Other authors postulate a Pauli equation for a nonrelativistic dyon [27]
and thus also assume that the dyon is a spin 1/2 fermion. A phenomenological model [28] assumes that the spin of a dyon can
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Fig. 5 The wave function of a dyon propagates toward an infinitely-long and impenetrable cylindrical shell of radius R. Inside the cylindrical shell and
infinitely-long dual solenoid of radius R that confines its electric and magnetic fluxes is placed

correspond to that of a fermion or a boson. If we assume that a dyon is a pin 1/2 fermion, then a consistent way to introduce the spin
into the Hamiltonian operator given in Eq. (46) is as follows

ĤD � 1

2m

[
σ ·

(
− i�∇ − 1

c
(qAout + gCout)

)]2

+ V, (58)

where σ � (σ1, σ1, σ3) is the Pauli operator with σi denoting the Pauli matrices. The corresponding Pauli equation in Dirac’s bra-ket
notation reads i�(∂|Ψ 〉/∂t) � ĤD|Ψ 〉, where now |Ψ 〉 is a two-component state function corresponding to a “spin up” state Ψ + and
a “spin down” state Ψ −. After some algebra, the Hamiltonian operator in Eq. (58) reduces to the more explicit form

ĤD �
[

1

2m

(
− i�∇ − 1

c
(qAout + gCout)

)2

+ V

]
+

g

2mc
σ · Eout − q

2mc
σ · Bout. (59)

which can be expressed as

ĤD �
[

1

2m

(
− i�∇ − 1

c
(qAout + gCout)

)2

+ V

]
+

2

gD
( d̂ · Eout − μ̂ · Bout), (60)

where the electric moment operator d̂ and the magnetic moment operator μ̂ are given by

μ̂ � γμ

2
σ , d̂ � γ d

2
σ , (61)

with μ � q/(2mc) and d � g/(2mc) being the magnetic moment and electric moments, and γ the corresponding g-factor.
Interestingly, Eq. (60) indicates that a dyon has both an electric moment and magnetic moment, i.e., the dyon has a dual moment and
in this sense, we can say that a dyon is also a dual dipole. To see how Eq. (59) becomes Eq. (60), we use the relation Ŝ � (�/2)σ ,

where Ŝ is the spin operator, to obtain the operators given in Eq. (61). Using these operators we obtain gσ/(2mc) � 2̂d/γ and
qσ/(2mc) � 2μ̂/γ , and therefore the last terms in Eqs. (59) and (60) are the same. The right-hand side of Eq. (60) manifests a
duality between the dipole moments of the dyon and a duality between the external electric and magnetic fields. This means that
the last term in Eq. (60) is invariant under the duality transformations: {μ̂ → d̂, d̂ → −μ̂} and {Eout → Bout, Bout → −Eout}. We
note that Heras [29] has discussed the duality of dipoles.

But the more important point for our purposes regarding either Eq. (59) or Eq. (60) is that the fields outside the dual solenoid
satisfy Bout � ∇ × Aout � 0 and Eout � −∇ × Cout � 0, and therefore the last two terms in Eq. (59) or in Eq. (60) identically
vanish. Accordingly, if we assume the validity of Eq. (59) or (60), then the spin of the dyon does not affect the phase δD. Therefore,
the results obtained in Sect. 7, which are connected with this phase, remain unaffected by the spin of the dyon.

The idea that a spin 1/2 monopole should have an associated electric moment was suggested by Amaldi [30]. This idea was
extended by Schwinger [8], who pointed out that a spin 1/2 dyon should have both magnetic and electric moments, i.e., that a dyon
should be a dual dipole as well. According to Schwinger, the electric moment of the dyon should be proportional to the product of
the magnetic charge of the dyon and its spin vector, an idea supported by the second equality in Eq. (61). More recently, Kobayashi
[31] showed in the context of supersymmetric Yang-Mills theories that a spin 1/2 monopole should have an electric moment. This
idea was later extended by [32], who suggested that a spin 1/2 dyon should have electric and magnetic moments. Interestingly, these
authors found a similar relation to that noted by Schwinger in which the electric moment of the dyon should be proportional to the
product of the magnetic charge of the dyon and its spin vector.

Finally, using Eq. (60) and assuming the Schwinger-Zwanziger quantisation condition [6–8], we can argue that the electric moment
of a spin 1/2 dyon is greater than its magnetic moment. Consider a dyon having the elementary electric and magnetic charges q � e
and g0 � e/(2α), which follow from a solution of the Schwinger-Zwanziger quantisation condition,4 where α � e2/(�c) is the fine

4 The Schwinger-Zwanziger quantisation condition states that a pair of dyons having the charges (q1, g1) and (q2, g2) satisfy the duality-invariant relation
q1g2 − q2g1 � N�c/2 where N is an integer. A solution of this quantisation condition is given by q1 � (n1)ee, q2 � (n2)ee, g1 � (n1)gg0, and
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structure constant. The electric and magnetic moments of this dyon are given by μ � e/(2mc) and d � e/(4mcα), or equivalently,
d � μ/(2α) ≈ 68.5μ, indicating that the electric moment of the dyon is greater than its magnetic moment by a factor 1/(2α). Since
the charges a dyon are quantised q � nee and g � ngg0, with ne and ng integers, it follows that the relation d � μ/(2α) holds in
general. This result and Eq. (61) connect the electric and magnetic moment operators

d̂ �
(

1

2α

)
μ̂, (62)

which states that, under the considerations made, the electric moment of a spin 1/2 dyon is greater by a factor of (1/2α) compared
with its corresponding magnetic moment. We emphasize that the arguments that lead to Eq. (62) are heuristic and based on the
validity of Eq. (60) and the Schwinger-Zwanziger quantisation condition.

9 Discussion: looking for dyons through the duality-invariant quantum phase

The story of magnetic monopoles has a beautiful part as well as a tortuous part. The beautiful part is that magnetic monopoles
explain the observed quantisation of the electric charge through the Dirac quantisation condition [34] (for a pedagogical review of
this condition, see Heras [35]) and are a prediction of grand unified theories [36, 37]. Moreover, monopoles deal with one of the
most profound ideas in physics: duality. More in general, duality is a beautiful symmetry that unifies seemingly unrelated theories
[38–40]. The paradigmatic example of this symmetry is the electromagnetic duality that unifies the electrodynamics of electric and
magnetic charges. The tortuous part of the story is that after more than 90 years since Dirac proposed them, all experimental efforts
to detect these particles have been unsuccessful (for recent reviews, see Refs. [41, 42]). In this regard, monopoles are still a sleeping
beauty. However, if monopoles do not exist as isolated particles, then a generalisation of them, the so-called dyons could exist.
We must say that dyons are interesting for similar reasons monopoles are: dyons explain the quantisation of the electric charge
through the Schwinger-Zwanziger quantisation condition [6–8], appear as predictions of grand unified theories [43], and obey the
electromagnetic duality of electric and magnetic charges. However, while the experimental search for monopoles has been extensive,
the experimental search for dyons has just begun [28]. An exciting idea that we have developed here has consisted in connecting
dyons with topological quantum phases. The possible detection of the phase δD could provide indirect evidence of dyons.

10 Conclusion

Here, we have shown that quantum mechanics and electromagnetic duality predict the existence of the duality invariant quantum
phase δD � n(qΦm − gΦe)/(�c). This phase is accumulated by the wave function of a dyon with charges q and g, which encircles
an infinitely-long solenoid enclosing uniform electric and magnetic fluxes Φe and Φm . We have pointed out that the phase δD is
topological because it depends on the winding number n and is nonlocal because the enclosed electric and magnetic fields act on
the dyon in a region where these fields are zero. We have shown that the duality symmetry of the phase δD unifies: (i) the AB
phase: δAB � nqΦm/(�c), which is accumulated by the wave function of an electric charge q encircling an infinitely-long magnetic
solenoid enclosing a uniform magnetic flux Φm and (ii) the DAB phase: δDAB � −ngΦe/(�c), which is accumulated by the wave
function of a magnetic charge g encircling an infinitely-long electric solenoid enclosing a uniform electric flux Φe. We have noted
that the phase δAB admits two interpretations in the light of the duality symmetry of the phase δD. We have obtained the energy
levels, the two-slit interference shift, and the scattering amplitude associated with the phase δD. We have showed that these results
also hold for the case of a dual flux line. We have briefly commented on the role of the spin of the dyon and showed that if the dyon
is a fermion of spin 1/2 then its spin does not contribute to the phase δD and, therefore, to any of the results associated with this
phase and discussed in Sec. 7. In our discussion of the dyon spin, we have suggested that a spin 1/2 dyon should have both electric
and magnetic moments and argued why the former should be greater than the latter.

Finally, we would like to comment on two potential applications of the quantum mechanical model proposed here in which a
dyon moves around a dual solenoid. The first deals with the demonstration that the phase δD is an example of the Berry/geometric
phase [44], which would connect duality with geometric phases. The second deals with anyons [45, 46] or composites formed by
an electric charge encircling a magnetic flux tube that obey fractional statistics. The dual model presented here could be used to
extend the concept of anyons to composites formed by a dyon encircling a dual flux tube, which could be called duality-invariant
anyons, or “d-anyons” for short. Expectably, such d-anyons would also have fractional statistics, but their duality symmetry could
bring new theoretical ideas.

g2 � (n2)gg0 where (n1)e, (n2)e, (n1)g , and (n2)g are integers, and e and g0 are the quanta of electric and magnetic charge connected by g0 � e/(2α). If
the first dyon has the elementary charges then q1 � e and g1 � g0 � e/(2α) which is the case we have considered. We note that Witten [33] found a more
general solution to the Schwinger-Zwanziger quantisation condition given by q1 � (n1)ee + (n1)geθ/2π, q2 � (n2)ee + (n2)geθ/2π, g1 � (n1)gg0, and
g2 � (n2)gg0, where θ is the vacuum angle, indicating that this solution assumes CP violation. Here we have not considered Witten’s solution because we
assume CP is conserved in our model.
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Appendix A: derivation of Eq. (8)

Consider the nonlocal Lagrangian in Eq. (7)

L(x; x0, ẋ) � mẋ2

2
+
ẋ
c

· [qA(x) + gC(x)] +
∫ x

x0

[gB(x) + qE(x)] · dx′, (A1)

The corresponding Euler-Lagrange equations are given by

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
� 0. (A2)

Using Eq. (A1) it follows

∂L

∂ ẋ
� mẋ +

1

c
(qA + gC), (A3)

so that the first term in the Euler-Lagrange equations reads

d

dt

(
∂L

∂ ẋ

)
� mẍ +

1

c

d

dt
(qA + gC). (A4)

Using the result (dF/dt) � (ẋ ·∇)F which holds for a time-independent vector function F � F(x) it follows (d/dt)(qAout +gCout) �
(ẋ · ∇)(qA + gC) which is used in Eq. (A4) to obtain

d

dt

(
∂L

∂ ẋ

)
� mẍ +

1

c
(ẋ · ∇)(qA + gC). (A5)

On the other hand, from the identity ẋ×(∇×F) � ∇(ẋ·F)−(F·∇)ẋ, it follows (ẋ·∇)(qA+gC) � −ẋ×∇×(qA+gC)+∇[ẋ·(qA+gC)],
which is used in Eq. (A5) to obtain

d

dt

(
∂L

∂ ẋ

)
� mẍ − ẋ

c
× ∇ × (qA + gC) +

1

c
∇[ẋ · (qA + gC)]. (A6)

The second term in the Euler-Lagrange equations read

∂L

∂x
� 1

c
∇[ẋ · (qA + gC)] + ∇

[ ∫ x

x0

[gB(x) + qE(x)] · dx′
]

(A7)

Let us evaluate the second term. The line integral gives∫ x

x0

[gB(x) + qE(x)] · dx′ � [gB + qE](z − z0), (A8)

where B � ΦmΘ(R − ρ)/(πR2) and E � ΦeΘ(R − ρ)/(πR2). Therefore

∇
[ ∫ x

x0

[gB(x) + qE(x)] · dx′
]

� ∇[(gB + qE)(z − z0)]

� (gΦm + qΦe)

πR2 ∇[Θ(R − ρ)(z − z0)]

� (gΦm + qΦe)

πR2 [(z − z0)δ(ρ − R)ρ̂ + Θ(R − ρ)ẑ]

� g

[
ΦmΘ(R − ρ)

πR2 ẑ
]

+ q

[
ΦeΘ(R − ρ)

πR2 ẑ
]

−
[

(gΦm + qΦe)

πR2 (z0 − z)δ(ρ − R)ρ̂

]

� gB + qE − Fs, (A9)

where E and B are the fields defined by Eq. (2) and Fs is the singular term defined in Eq. (9). Using Eq. (A9) in Eq. (A7) it follows

∂L

∂x
� 1

c
∇[ẋ · (qA + gC)] + gB + qE + Fs. (A10)
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Using Eqs. (A6) and (A10) we obtain

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
� mẍ − ẋ

c
× ∇ × (qA + gC) − gB − qE − Fs � 0. (A11)

Identifying ∇ × A � B, −∇ × C � E, and F � mẍ it follows

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
� F −

[
q

(
E +

ẋ
c

× B
)

+ g

(
B − ẋ

c
× E

)]
− Fs � 0. (A12)

Equation (A12) implies

F �
[
q

(
E +

ẋ
c

× B
)

+ g

(
B − ẋ

c
× E

)]
+ Fs, (A13)

which is Eq. (8).

Appendix B: Scattering amplitude with a dual flux line

Consider the scattering amplitude in Eq. (54)

fD(φ) �
∞∑

μ�−∞

eiμφ

√
2π ik

[
H (2)

|μ| (kR)

H (1)
|μ| (kR)

− eiπ (|μ|−|μ−(qΦm−gΦe)/(2π�c)|) H
(2)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

H (1)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

]
, (B1)

corresponding to a dyon scattered in the x− y plane outside a dual solenoid of finite radius R enclosed by an impenetrable cylindrical
shell of radius R. We want to find the form of Eq. (B1) as R → 0, i.e., when the dual solenoid reduces to a dual flux line. We will
now follow arguments due to Afanasiev [18] and Hagen [47].

In the limit R → 0 we have kR << 1 and the ratio of the Hankel functions of the second and first kind in Eq. (B1) can be
approximated to [18]

H (2)
|μ| (kR)

H (1)
|μ| (kR)

≈ −1,
H (2)

|μ−(qΦm−gΦe)/(2π�c)|(kR)

H (1)
|μ−(qΦm−gΦe)/(2π�c)|(kR)

≈ −1. (B2)

Inserting Eq. (B2) in Eq. (B1) it reduces to

fD(φ) �
∞∑

μ�−∞

eiμφ

√
2π ik

[
e2iδs − 1

]
, (B3)

where δs is the scattering phase given by

δs � π

2
|μ|−π

2

∣∣∣∣μ − (qΦm − gΦe)

2π�c

∣∣∣∣. (B4)

To compute the summation in Eq. (B3) we let [(qΦm − gΦe)/(2π�c)] � N + β where N is the largest integer less than [(qΦm −
gΦe)/(2π�c)] and the quantity β is any non-integer in the range 0 ≤ β < 1. Using this result we can write the scattering phase in
Eq. (B4) as δs � (π/2)|μ|−(π/2)|μ − N − β|. Now, if μ ≥ N then |μ|−|μ − N − β|� [(qΦm − gΦe)/(2π�c)] and if μ < −N
then |μ|−|μ − N − β|� −[(qΦm − gΦe)/(2π�c)]. Therefore, we can write the scattering phase in Eq. (B4) as

δs �

⎧⎪⎪⎨
⎪⎪⎩

−π

2

(qΦm − gΦe)

2π�c
, μ ≥ N

+
π

2

(qΦm − gΦe)

2π�c
, μ < −N

(B5)

Using Eq. (B5) in Eq. (B3) and after an appropriate handling of the summation limits we obtain

fD(φ) � 1√
2π ik

[ ∞∑
μ�−N

eiμφ(eiπ (qΦm−gΦe)/(2π�c) − 1) +
−N−1∑
μ�−∞

eiμφ(e−iπ (qΦm−gΦe)/(2π�c) − 1)

]
. (B6)

The summations in Eq. (B6) are now simple to evaluate and they give
∞∑

μ�−N

eiμφ(eiπ (qΦm−gΦe)/(2π�c) − 1) � − (e−i Nφ)(eiπ (qΦm−gΦe)/(2π�c) − 1)

(eiφ − 1)
, (B7)

−N−1∑
μ�−∞

eiμφ(e−iπ (qΦm−gΦe)/(2π�c) − 1) � (e−i Nφ)(e−iπ (qΦm−gΦe)/(2π�c) − 1)

(eiφ − 1)
, (B8)
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where we have assumed φ �� 0 and φ �� 2π . Inserting the Eq. (B7) and Eq. (B8) in Eq. (B6) it follows that the scattering amplitude
in Eq. (B6) reduces to

fD(φ) � −2i e−i Nφ

√
2π ik

[
sin[π(qΦm − gΦe)/(2π�c)]

eiφ − 1

]
, (B9)

which is Eq. (56). Using Eq. (B9) and dσ/dΩ � | fD|2 we obtain the corresponding differential scattering cross section in Eq. (57).
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