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Abstract We have recently (Heras et al. in Eur. Phys. J. Plus 136:847, 2021) argued that classical electrodynamics can predict
nonlocal effects by showing an example of a topological and nonlocal electromagnetic angular momentum. In this paper, we discuss
the dual of this angular momentum which is also topological and nonlocal. We then unify both angular momenta by means of
the electromagnetic angular momentum arising in the configuration formed by a dyon encircling an infinitely long dual solenoid
enclosing uniform electric and magnetic fluxes and show that this electromagnetic angular momentum is topological because it
depends on a winding number, is nonlocal because the electric and magnetic fields of this dual solenoid act on the dyon in regions
for which these fields are excluded and is invariant under electromagnetic duality transformations. We explicitly verify that this
duality-invariant electromagnetic angular momentum is insensitive to the radiative effects of the Liénard–Wiechert fields of the
encircling dyon. We also show how duality symmetry of this angular momentum suggests different physical interpretations for the
corresponding angular momenta that it unifies.

1 Introduction

In a recent paper [1], we have pointed out that classical electrodynamics can predict nonlocal effects when considering electromagnetic
configurations lying in non-simply connected regions. We have shown that the configuration formed by an electric charge q encircling
an infinitely long magnetic solenoid enclosing a uniform magnetic flux Φm accumulates the electromagnetic angular momentum

Lq = nqΦm

2πc
ẑ, (1)

where the integer n specifies the number of times the electric charge encircles the magnetic solenoid. The electric charge moves
in a non-simply connected region where there is no magnetic field and therefore there is no Lorentz force acting on the electric
charge but there is a nonzero vector potential. The electromagnetic angular momentum Lq is topological because it depends on the
winding number n and is nonlocal because the magnetic field of the solenoid acts on the electric charge in regions for which this
field is excluded. We have argued that the magnitude of (1) can be considered as the classical counterpart of the Aharonov–Bohm
(AB) phase [2]: δAB = qΦm/(h̄c), being both quantities connected by the linear relation [3,4]: δAB = 2πLq/h̄.

In this paper, we discuss two other examples of nonlocal electromagnetic angular momenta arising in non-simply connected
regions. The first example is the electromagnetic angular momentum

Lg = −ngΦe

2πc
ẑ, (2)

of the dual configuration formed by a magnetic charge g encircling an infinitely long electric solenoid enclosing a uniform electric
flux Φe. The electromagnetic angular momentum Lg is the dual of the electromagnetic angular momentum Lq , i.e., the former can
be obtained from the latter by simply making the dual changes q → g and Φm → −Φe. We show that Lg is also topological and
nonlocal and suggest that its z−component can be considered as the classical counterpart of the dual of the Aharonov–Bohm (DAB)
phase [5,6]: δDAB = −gnΦe/(h̄c), being both quantities connected by the linear relation δDAB = 2πLg/h̄.

The second example is the duality-invariant electromagnetic angular momentum

Lqg = n(qΦm − gΦe)

2πc
ẑ, (3)

of the configuration formed by a dyon [7], a particle possessing both an electric charge q and a magnetic charge g, encircling an
idealised infinitely long dual solenoid enclosing both a uniform electric flux Φe and a uniform magnetic flux Φm . We show that Lqg

is topological because it depends on the winding number n, is nonlocal because the electric and magnetic fields of this dual solenoid
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act on the dyon in regions for which these fields are excluded and is invariant under two sets of independent electromagnetic duality
transformations: the set formed by the transformations q → g and g → −q, and the set formed by the transformations Φm → −Φe

and Φe → Φm . More in general, we show that Lqg is invariant under a U (1) duality transformation group having the angle θ as
the transformation parameter. We then argue that Lqg provides a unified description of Lq and Lg, which means that Lqg becomes
Lq for certain values of θ and Lg for other values of θ . This duality symmetry is not only interesting from mathematical point of
view but is also interesting from a physical point of view since it allows us to give two different physical interpretations for both Lq

and Lg . We then claim that the z-component of (3) can be considered as the classical counterpart of the duality-invariant quantum
phase introduced in [8]: δD = (qΦm − gΦe)/(h̄c), being both quantities connected by the linear relation δD = 2πLqg/h̄. We
emphasize the topological nature of Lqg by noting that it is independent from the dynamics of the dyon and stress this independence
by demonstrating that Lqg is insensitive to the radiative effects of the Liénard–Wiechert fields of the encircling dyon.

The fact that no magnetic charges have been observed in nature has led to the common idea that electromagnetic duality is an
accidental symmetry of some quantum field theories rather than a fundamental feature of classical electrodynamics [9–11]. Duality
symmetry of point electric and magnetic charges is manifested in the fact that the external electric and magnetic fields of these
charges exhibit the same form. These fields are not defined inside the point charges, and therefore duality symmetry of point charges
can be thought of as an external symmetry of these charges. On the other hand, classical electrodynamics predicts an exact similarity
between the external field lines of an electric dipole and those due to a magnetic dipole, i.e., the external fields of point electric and
magnetic dipoles exhibit the same form. This dipole similarity turns out to be a clear manifestation of duality symmetry, which is
observed in the static and dynamical regimes [12]. The difference now is that the electric and magnetic dipole fields are defined inside
the point dipoles themselves through delta terms of different form—therefore the dipole duality symmetry is broken inside the point
dipoles. The dipole duality symmetry may be represented by the U (1) duality transformations [12]: E′ + iB′ = eiθ

(
E + iB

)
and

d′ + iμ′ = eiθ
(
d + iμ

)
, where the external electric and magnetic fields are produced by the electric and magnetic dipole moments.

Why has this duality symmetry manifested itself in the electrodynamics of dipoles but not in the electrodynamics of charges? We
do not know the answer, but the fact that this symmetry exists in electric and magnetic dipoles encourages us to continue looking
for monopoles. In any case, the search for magnetic monopoles continues to be of considerable interest [13,14], mainly motivated
by the fact that the elusive magnetic charges would allow us to explain the observed quantisation of the electric charge [15,16]. On
the other hand, the MoEDAL collaboration has recently made the first experimental search for dyons [17] which would indirectly
prove the existence of magnetic charges. Our study on the electromagnetic angular momentum of the dyon–solenoid configuration
has been motivated to some extent by this recent interest in the search for dyons.

2 Monopole–solenoid configuration

In this section and in the two subsequent sections, we closely follow the discussion given in Ref. [1] by making appropriate dual
changes and putting more emphasis on relevant results than on formal details which can be found in Ref. [1].

The monopole–solenoid configuration consists of a particle of magnetic charge g and mass m which is continuously moving
around an infinitely long electric solenoid of radius R which encloses a uniform electric flux Φe. The z-axis is chosen to be the
axis of this electric solenoid (see Fig. 1). Cylindrical coordinates (ρ, θ, φ) are adopted. The corresponding magnetic current density
reads

Jm = −cΦeδ(ρ − R)

4π2R2 φ̂, (4)

where δ(ρ − R) is the Dirac delta function and Φe = πR2E is the electric flux through the electric solenoid with E being the
magnitude of the uniform electric field inside this electric solenoid. The current Jm is a steady current: ∇ · Jm = 0 and its electric
field satisfies the equations

∇ · E = 0, ∇ × E = Φeδ(ρ − R)

πR2 φ̂, (5)

whose solution is given by the electric field

E = ΦeΘ(R − ρ)

πR2 ẑ, (6)

which is confined in the electric solenoid. Here, Θ(ρ − R) is the Heaviside step function. From (6), it follows that Eout = 0 and
Ein = Φe ẑ/(πR2), where Eout and Ein are, respectively, the electric field outside (ρ > R) and inside (ρ < R) the electric solenoid.
From the first equation in (5), we infer E = −∇ × C where C is the corresponding electric vector potential. Using this relation in
the second equation in (5) and adopting the Coulomb gauge ∇ · C = 0, we obtain the Poisson equation:

∇2C = Φeδ(ρ − R)

πR2 φ̂, (7)
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Fig. 1 Monopole–solenoid
configuration. A magnetic charge
moving in the x-y plane along the
path C which encircles an
infinitely long solenoid enclosing
a uniform electric flux

whose solution reads

C = −Φe

2π

(
Θ(ρ − R)

ρ
+ ρ Θ(R − ρ)

R2

)
φ̂. (8)

The proof that the Laplacian of (8) yields (7) is entirely similar to that given in Appendix A of Ref. [1] with the changes A → C and
Φm → −Φe. The potential C is not defined at ρ = R, but one can regularise it to obtain C(R) = −Φeφ̂/(2πR) which indicates
that C is continuous at ρ = R. Equation (8) satisfies the Coulomb gauge: ∇ · C = (1/ρ)(∂Cφ/∂φ) = 0. The proof that minus the
curl of (8) yields the electric field in (6) is entirely similar to that given in Appendix B of Ref. [1] with the dual changes A → C
and Φm → −Φe. From (8), it follows that

Cout = − Φe

2πρ
φ̂, Cin = − ρΦe

2πR2 φ̂, (9)

where Cout is the electric vector potential outside the electric solenoid (ρ > R), which is connected with its electric field Eout =
−∇ × Cout = 0 and Cin is the electric vector potential inside the electric solenoid (ρ < R), which is connected with its electric
field Ein = −∇ × Cin = Φe ẑ/(πR2).

The potential Cout is a pure gauge potential: Cout = ∇χe with χe = −Φeφ/(2π) being a multi-valued function that satisfies
∇2χe = 0. The Lorentz force reads F = −gẋ × E/c, where ẋ = dx/dt is the velocity of the magnetic charge and x is its position.
Inserting the electric field (6) and ẋ = ρ̇ρ̂ + ρφ̇φ̂ + żẑ in the Lorentz force, we obtain

F = −gΦeΘ(R − ρ)

πR2 (ρφ̇ρ̂ − ρ̇φ̂). (10)

In the monopole–solenoid configuration, the moving magnetic charge is outside the solenoid (ρ > R), and therefore Θ = 0 which
implies F = 0. In short, the Lorentz force vanishes because the electric field is zero in the region where the magnetic charge is
moving.

3 Topology and nonlocality of the circulation of Cout

In Sect. 3 of Ref. [1], we have demonstrated that the Cauchy’s integral formula for an analytic function implies the particular relation
∮

C

(
K φ̂

2πρ

)
· dx =

{
nK ifC encloses ρ = 0
0 otherwise

(11)

where K is a constant and n is the winding number of the curve C which gives the number of times the curve C encircles the
singularity ρ = 0. Let us now apply (11) to the infinitely long electric solenoid enclosing the uniform electric flux Φe. We make
the identification K = −Φe in (11) and obtain the relation K φ̂/(2πρ) = −Φeφ̂/(2πρ) = Cout(x). Since the solenoid encloses the
singularity at ρ = 0, it follows:

∮

C
Cout ·dx =

{−nΦe if C encloses the electric solenoid
0 otherwise

(12)
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Fig. 2 a The circulation of Cout
in a closed path around the electric
solenoid is insensitive to the form
of the path. b The circulation Cout
is taken along a path C greater
than the boundary ∂S of the
surface S of the electric solenoid.
Since∮
C>∂S Cout · dx = − ∫

S Ein · dS
holds, the circulation of Cout is
spatially delocalised from the
surface of the solenoid where the
flux of the electric field is
localised

which states that if the curve C encircles −n times the electric solenoid then
∮
C Cout · dx accumulates −n times the electric flux

Φe. Since −nΦe is a constant quantity,
∮
C Cout · dx is insensitive to the form of the curve C and thereby to the dynamics that we

could associate with it. If we consider C1,C2...Ck different curves which enclose −n times the electric solenoid then (12) implies
∮

C1

Cout · dx =
∮

C2

Cout ·dx = · · · =
∮

Ck

Cout · dx. (13)

The curves C1,C2...Ck are homotopically equivalent and thus we could not distinguish if −nΦe is connected with the circulation of
Cout along C1 or along C2 or along Ck . Following Ref. [1], we can show that the Stokes theorem applied to the monopole–solenoid
configuration takes the following form:

∮

C>∂S
Cout · dx =

∫

S
∇ × Cin · dS, (14)

Considering ∇ × Cin = −Ein with Ein being the constant electric field inside the electric solenoid, (14) becomes
∮

C>∂S
Cout · dx = −

∫

S
Ein · dS, (15)

which admits a nonlocal interpretation: while the left-hand side is defined outside the electric solenoid, the right-hand side is defined
inside this solenoid, i.e.,

∮
C>∂S Cout · dx and

∫
S Ein · dS, are nonlocally connected. Equations (13) and (15) imply the relation

∮

Ck>∂S
Cout · dx = · · · =

∮

C2>∂S
Cout · dx =

∮

C1>∂S
Cout · dx = −

∫

S
Ein · dS, (16)

according to which we cannot distinguish if −nΦe is connected with the circulation of Cout along C1 > ∂S or along C2 > ∂S or
along Ck > ∂S (see Fig. 2). The circulations in (16) are spatially delocalised with respect to the electric flux. We then conclude
that the potential Cout is ambiguous due to its gauge dependence and its circulation

∮
C Cout · dx is also ambiguous due to its spatial

delocalisation (indistinguishability of C).

4 Electromagnetic angular momentum of the monopole-solenoid configuration

The following theorem is the dual of the theorem formulated in Sect. 4 of Ref. [1].

Dual Decomposition Theorem

Let B(x, t) be a time-dependent magnetic field and �m(x, t) = ∇ · B/(4π) its associated magnetic charge density. Let E(x) be a
time-independent electric field and C(x) its associated vector potential ∇ × C = −E. The fields B and E are independent fields
produced by different sources. The Poynting formula for the electromagnetic angular momentum in the volume V originated by the
interaction between the fields B and E is given by

LP = 1

4πc

∫

V
x × (E × B) d3x, (17)

which can be decomposed as

LP = LM + LR + LG + LS, (18)

where

LM = 1

c

∫

V
x × (�mC) d3x, (19)
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LR = 1

4πc

∫

V
x × [

(∇ × B) × C
]
d3x, (20)

LG = 1

4πc

∫

V
x × (B∇ · C) d3x, (21)

LS = 1

4πc

∮

S
x × [

n̂(B · C) − C(n̂ · B) − B(n̂ · C)
]
dS. (22)

Here, S is the surface of the volume V . The proof and interpretation of this theorem is entirely similar to that formulated Ref. [1]
with the dual changes E → B, B → −E and A → C. The term LR in (20) deals with possible radiative effects. The term LG in
(21) is determined by the adopted gauge for the potential C. The term LS in (22) is a surface term.

We now proceed to apply (18) to the monopole–solenoid configuration where the volume V covers all space except the volume
of the electric solenoid. It is clear LP = 0 because E = 0 outside the electric solenoid and therefore (18) becomes 0 = LM +
LR + LG + LS. At the end of Appendix E, we show that LR = 0 indicating that the electromagnetic angular momentum of the
monopole–solenoid configuration is insensitive to the Liénard–Wiechert fields of the encircling magnetic charge. We have also
LG = 0 because of the adopted Coulomb gauge ∇ · Cout = 0. Therefore, (18) reduces to 0 = LM + LS and thus there exists LM

in the volumetric space where the magnetic charge is moving around the electric solenoid and there exists LS on the surface of this
volumetric space which lies at infinity. We will see that the piece LM is related to the flux of the electric field of the solenoid and
therefore LS may be interpreted as an electromagnetic angular momentum originated by the return flux of the electric field of an
infinitely long electric solenoid. When considering 0 = LM + LS, we should always have in mind that LM and LS are defined in
different spatial regions.

In order to obtain the electromagnetic angular momentum Lg of the monopole–solenoid configuration, we apply (19) by
assuming that the charge g is localised in the x–y plane and that its corresponding position vector is given by xg(t) =
{ρg(t) cos φg(t), ρg(t) sin φg(t), 0} = ρg(t)ρ̂. The associated magnetic charge density takes the form �m(x′, t) = (g/ρ′)δ{ρ′ −
ρg(t)}δ{φ′ −φg(t)}δ{z′}, and the electric vector potential is given by Cout(x′) = −Φeφ̂/(2πρ′). A generic point reads x′ =ρ′ρ̂+z′ẑ.
Using these ingredients and integrating the right-hand side of (19), we obtain

1

c

∫

V
�m(x′, t) x′ × Cout(x′) d3x ′ = −ngΦe

2πc
ẑ, (23)

where the winding number n gives the number of times the magnetic charge travels its closed path around the electric solenoid.
In the derivation of (23), we have used the following results:

∫ ∞
−∞ δ(z′)dz′ = 1,

∫ ∞
−∞ z′δ(z′)dz′ = 0,

∫ ∞
R δ{ρ′ − ρg(t)} dρ′ =

Θ{ρg(t) − R} = 1, (because ρg(t) > R outside the electric solenoid) and the relation
∮
C δ{φ′ − φg(t)} dφ′ = n which is

demonstrated in Appendix F of Ref. [1]. Therefore, (23) represents the accumulated electromagnetic angular momentum of the
monopole–solenoid configuration

Lg = −ngΦe

2πc
ẑ. (24)

Using (12), we can also write

Lg = gẑ
2πc

∮

C
Cout · dx, (25)

which is gauge invariant on account of the gauge invariance of the circulation of the potential Cout, i.e.,
∮
C C′

out ·dx = ∮
C Cout ·dx+∮

C ∇Λ · dx = ∮
C Cout · dx, where Λ is a single-valued gauge function. According to (25), the electromagnetic angular momentum

Lg depends on the circulation of the potential Cout. Using (15), we can see that (25) can be expressed as

Lg = − gẑ
2πc

∫

S
Ein · dS, (26)

which states that the electromagnetic angular momentum Lg calculated outside the electric solenoid depends on the flux of the electric
field inside this solenoid. Evidently, (25) and (26) suggest different interpretations of the physical origin of the electromagnetic
angular momentum Lg . Using these two equations, we obtain the relation

gẑ
2πc

∮

C
Cout · dx = Lg = − gẑ

2πc

∫

S
Ein · dS. (27)

The first interpretation, which we will call the C-explanation, is supported by the first equality in (27). This states that Cout locally
acts through its circulation on the magnetic charge originating Lg . In other words, Cout exists in each point of the trajectory of g and
therefore Cout locally acts on g producing Lg . The second interpretation, which we will call the E-explanation, is supported by the
second equality in (27), which states that Ein nonlocally acts through its electric flux on the magnetic charge originating Lg . Since
both g and Ein lie in different regions, their interaction is nonlocal. In other words, Ein exists inside the electric solenoid and not in
each point of the trajectory of g outside this solenoid and therefore Ein nonlocally acts on g producing Lg . We find unsatisfactory
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the C-explanation for the following arguments: the potential Cout is gauge-dependent, and therefore it cannot represent a physical
quantity. On the other hand, the relation (16) implies

gẑ
2πc

∮

Ck>∂S
Cout · dx = · · · = gẑ

2πc

∮

C2>∂S
Cout · dx = gẑ

2πc

∮

C1>∂S
Cout · dx = Lg = − gẑ

2πc

∫

S
Ein · dS, (28)

where C1 > ∂S,C2 > ∂S, . . . ,Ck > ∂S are homotopically equivalent charge paths. We cannot know which of the circulations
of the potential Cout displayed in (28) is connected with Lg . The potential Cout is ambiguous due to its gauge dependence and
its circulation

∮
C Cout · dx is ambiguous due to its spatial delocalisation (indistinguishability of the curve C). Therefore, the C-

explanation is unsatisfactory. But if we consider the last equality in (28), then we conclude that Lg outside the electric solenoid is
unambiguously connected with the flux of the electric field confined inside the solenoid. Since the magnetic charge and the electric
flux lie in different spatial regions, they nonlocally interact to produce Lg . Thus, the E-explanation holds.

As a theoretical application of the electromagnetic angular momentum Lg , consider that the magnetic charge g is the elementary
magnetic monopole g0, i.e., g = g0. Furthermore, consider the Dirac quantisation condition [15,16]: qg = Nh̄c/2 (with N an
integer) for the case in which q = e with e being the electron charge and g = g0 implies the relation g0 = e/(2α), where α is the
fine structure constant. Under these considerations and recalling that Φe = πR2E is the electric flux with E being the magnitude of
the uniform electric field inside the electric solenoid, (24) yields the following relation Lg0 = −eR2E/(4αc) for the z-component
of the corresponding electromagnetic angular momentum.

5 Dyon–solenoid configuration

The program followed in Ref. [1] to study the electromagnetic angular momentum Lq of the charge–solenoid configuration and the
similar program developed here to study the electromagnetic angular momentum Lg of the monopole–solenoid configuration can
naturally be combined to study the electromagnetic angular momentum Lqg of the dyon–solenoid configuration. The interesting
point of Lqg is that besides its topological and nonlocal features, it is duality invariant.

The dyon–solenoid is formed by a dyon, a particle of mass m which possesses both an electric charge q and a magnetic charge g,
continuously moving around an infinitely long solenoid of radius R which encloses both a uniform electric flux Φe and a uniform
magnetic flux Φm (see Fig. 3). We will call such a solenoid the dual solenoid which is centred along the z-axis. The electric and
magnetic fields of the dual solenoid are produced by the electric and magnetic surface current densities

Je = cΦmδ(ρ − R)

4π2R2 φ̂, Jm = −cΦeδ(ρ − R)

4π2R2 φ̂, (29)

where Φm = πR2B and Φe = πR2E are the magnetic and electric fluxes with B and E being the magnitude of the uniform electric
and magnetic fields inside the dual solenoid. The currents Jm and Je are steady currents: ∇ · Jm = 0 and ∇ · Je = 0, and their
corresponding electric and magnetic fields satisfy the equations

∇ · B = 0, ∇ × B = Φmδ(ρ − R)

πR2 φ̂, (30)

∇ · E = 0, ∇ × E = Φeδ(ρ − R)

πR2 φ̂. (31)

The first equations in (30) and (31) indicate that there are no isolated electric and magnetic charges inside the dual solenoid. The
solution of (30) and (31) is given by magnetic and electric fields

B = ΦmΘ(R − ρ)

πR2 ẑ, E = ΦeΘ(R − ρ)

πR2 ẑ. (32)

which are confined in the dual solenoid. It follows that Eout = 0 and Bout = 0 are the electric and magnetic fields outside (ρ > R)

the dual solenoid and that Ein = Φe ẑ/(πR2) and Bin = Φm ẑ/(πR2) are the electric and magnetic fields inside (ρ < R) the dual
solenoid.

From the first equation in (30), we infer the relation B = ∇ × A where A is the magnetic vector potential. Analogously, from
the first equation in (31) we infer the relation E = −∇ × C where C is the electric vector potential. Using these relations in the
respective second equations in (30) and (31), and adopting the Coulomb gauges ∇ · A = 0 and ∇ · C = 0, we obtain the Poisson
equations

∇2A = −Φmδ(ρ − R)

πR2 φ̂, ∇2C = Φeδ(ρ − R)

πR2 φ̂, (33)

whose solutions read

A = Φm

2π

[
Θ(ρ − R)

ρ
+ ρ Θ(R − ρ)

R2

]
φ̂, C = −Φe

2π

[
Θ(ρ − R)

ρ
+ ρ Θ(R − ρ)

R2

]
φ̂. (34)

123
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Fig. 3 Dyon–solenoid
configuration. A dyon with electric
and magnetic charges is moving in
the x-y plane along the path C
which encircles an infinitely long
dual solenoid enclosing uniform
electric and magnetic fields

These potentials are not defined at ρ = R because of the discontinuity of the Heaviside step function. However, a simple regularisation
gives A(R) = Φm φ̂/(2πR) and C(R) = −Φeφ̂/(2πR), indicating that both A and C are continuous at ρ = R.

We observe that the fields, potentials, currents and fluxes associated with the dual solenoid are invariant under the electromagnetic
duality transformations

E → B, B → −E, A → C, C → −A,

Je → Jm, Jm → −Je, Φe → Φm, Φm → −Φe. (35)

From (34), it follows that

Aout = Φm

2πρ
φ̂, Cout = − Φe

2πρ
φ̂, (36)

where Aout and Cout are the magnetic and electric vector potentials outside the dual solenoid, which are connected with their
respective magnetic and electric fields: Bout = ∇ × Aout = 0 and Eout = −∇ × Cout = 0. Analogously, from (34) it follows

Ain = ρΦm

2πR2 φ̂, Cin = − ρΦe

2πR2 φ̂. (37)

where Ain and Cin are the magnetic and electric vector potentials inside the dual solenoid, which are connected with their respective
magnetic and electric fields by Bin = ∇ × Ain = Φm ẑ/(πR2)ẑ and Ein = −∇ × Cin = Φe ẑ/(πR2). Notice that Aout and Cout are
pure gauge potentials: Aout = ∇χm and Cout = ∇χe, where χm = Φmφ/(2π) and χe = −Φeφ/(2π) are multi-valued functions
of the azimuthal coordinate: χm �= χm(φ + 2π) and χe �= χe(φ + 2π) and satisfy ∇2χm = 0 and ∇2χe = 0. Their gradients ∇χm

and ∇χe are singular functions.
The region outside the dual solenoid is a region free of electromagnetic forces. The generalised Lorentz force is given by [7]:

F = q ẋ × B/c − gẋ × E/c, where ẋ = dx/dt is the velocity of the dyon and x is its position. Using (32) and ẋ = ρ̇ρ̂ + ρφ̇φ̂ + żẑ
in the generalised Lorentz force, we obtain

F = (qΦm − gΦe)Θ(R − ρ)

πR2 (ρφ̇ρ̂ − ρ̇φ̂). (38)

In the dyon–solenoid configuration, the moving dyon is outside the solenoid (ρ > R) and therefore Θ = 0, which implies F = 0.

In short, the generalised Lorentz force vanishes because the electric and magnetic fields are zero in the region where the dyon is
moving.

6 Topology and nonlocality of the circulation of Aout + Cout

Let us now apply (11) to the dual solenoid by first making the identification K = Φm − Φe in K φ̂/(2πρ) to obtain the relation

K φ̂

2πρ
=

(
Φm

2πρ
− Φe

2πρ

)
φ̂ = Aout + Cout. (39)

Since the dual solenoid encloses a singularity at ρ = 0, it follows from (11) that
∮

C
(Aout + Cout)·dx =

{
n(Φm − Φe) ifC encloses the dual solenoid
0 otherwise

(40)
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Fig. 4 a The circulation of
Aout + Cout in a closed path
around the dual solenoid is
insensitive to the form of the path.
b The circulation of Aout + Cout
is taken along a path C greater
than the boundary ∂S of the
surface S of the dual solenoid.
From

∮
C>∂S(Aout + Cout) · dx =∫

S(Bin − Ein) · dS, it follows that
the circulation of Aout + Cout is
spatially delocalised from the
surface of the dual solenoid where
the fluxes of the fields Bin and Ein
are localised

The circulation of Aout + Cout in (40) is constant, and therefore it is insensitive to the form of the curve C and also to the dynamics
that we can associate with this curve. Accordingly, if we consider C1,C2...Ck different curves enclosing n times the dual solenoid,
then we have the equalities

∮

C1

(Aout + Cout) · dx =
∮

C2

(Aout + Cout) ·dx = ... =
∮

Ck

(Aout + Cout) · dx. (41)

The curves C1,C2...Ck are homotopically equivalent. Therefore, we do not know if n(Φm − Φe) is connected with the circulation
of Aout + Cout along C1 or along C2 or along Ck .

The Stokes theorem for the charge–solenoid configuration reads
∮
C>∂S Aout ·dx = ∫

S ∇×Ain ·dS and for the monopole–solenoid
configuration this theorem reads

∮
C>∂S Cout · dx = ∫

S ∇ × Cin · dS. It follows that the Stokes theorem applied to the dyon–solenoid
configuration takes the form

∮

C>∂S
(Aout + Cout) · dx =

∫

S
∇ × (Ain + Cin) · dS, (42)

which admits a nonlocal interpretation: while the left-hand side of (42) is defined outside the dual solenoid, its right-hand side is
defined inside this solenoid. Since ∇ × Ain = Bin, and ∇ × Cin = −Ein, (42) can also be written as

∮

C>∂S
(Aout + Cout) · dx =

∫

S
(Bin − Ein) · dS, (43)

according to which the difference of the magnetic and electric fluxes confined in the dual solenoid and the circulation of the sum
of the magnetic and electric vector potentials along a curve outside the dual solenoid are nonlocally connected. Equations (41) and
(43) imply

∮

Ck>∂S
(Aout + Cout) · dx = ... =

∮

C2>∂S
(Aout + Cout) · dx =

∮

C1>∂S
(Aout + Cout) · dx=

∫

S
(Bin − Ein) · dS. (44)

We have here an ambiguity because we cannot distinguish if the difference of the fluxes is connected with the circulation of the
sum of the potentials along C1 > ∂S or along C2 > ∂S or along Ck > ∂S, i.e., the circulations in (44) are spatially delocalised
with respect to the fluxes. The sum Aout + Cout is ambiguous due to the gauge dependence of both potentials, and its circulation∮
C (Aout + Cout) · dx is also ambiguous due to its spatial delocalisation (indistinguishability of the curve C).

7 Electromagnetic angular momentum of the dyon–solenoid configuration

Considering the decomposition theorem demonstrated in Ref. [1] and its dual version given in Sect. 4, we can formulate the
following duality-invariant decomposition theorem which allows to derive the electromagnetic angular momentum of the dyon–
solenoid configuration.

Duality-invariant decomposition theorem

Let E(x, t) and B(x, t) be time-dependent electric and magnetic fields and �e(x, t) = ∇ · E/(4π) and �m(x, t) = ∇ ·B/(4π) their
associated electric and magnetic charge densities. Let E(x) and B(x) be time-independent electric and magnetic fields and A(x) and
C(x) their associated vector potentials ∇ × A = B and ∇ × C = −E. The fields E and B are independent of the fields E and B,
i.e., both sets of fields are produced by different sources. The Poynting formula for the electromagnetic angular momentum in the
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volume V originated by the interaction between the fields E and B, and the fields E and B are given by

LP = 1

4πc

∫

V
x × (E × B + E × B) d3x, (45)

and can be decomposed as

LP = LM + LR + LG + LS, (46)

where

LM = 1

c

∫

V
x × (�eA + �mC) d3x, (47)

LR = 1

4πc

∫

V
x × [

(∇ × E) × A + (∇ × B) × C
]
d3x, (48)

LG = 1

4πc

∫

V
x × [E(∇ · A) + B(∇ · C)] d3x, (49)

LS = 1

4πc

∮

S
x × [

n̂(E · A + B · C) − A(n̂ · E) − C(n̂ · B) − E(n̂ · A) − B(n̂ · C)
]
dS. (50)

Here, S is the surface of the volume V . The proof of this theorem is given in two parts. In Appendix A, we show the validity of (45).
In Appendix B, we show that (46) follows from a tensor identity. The term LR in (48) deals with possible radiative effects. The term
LG in (49) involving ∇ · A and ∇ · C deals with the adopted gauge for the potentials A and C. The term LS in (50) is a surface term.

We can apply (46) to the dyon–solenoid configuration where the volume V covers all space except the volume of the dual solenoid.
In this case, we immediately conclude that LP = 0 because E = 0 and B = 0 outside the dual solenoid. At the end of Appendix
E, we show that LR = 0, which indicates that the electromagnetic angular momentum is insensitive to the radiative effects of the
encircling dyon. We have LG = 0 because ∇ · Aout = 0 and ∇ · Cout = 0. Thus, (46) reduces to 0 = LM + LS, indicating that
there exists LM in the volumetric space where the dyon is moving around the dual solenoid and there exists LS on the surface of this
volumetric space which lies at infinity. In the relation 0 = LM + LS, the pieces LM and LS are defined in different spatial regions.

Equation (47) allows us to obtain the duality-invariant electromagnetic angular momentum Lqg of the dyon–solenoid configuration
covering all space except the surface S which lies at infinity. We assume that the dyon is localised in the x-y plane, and therefore its
position vector is given by

xqg(t) = {ρqg(t) cos φqg(t), ρqg(t) sin φqg(t), 0} = ρqg(t)ρ̂. (51)

The associated electric and magnetic charge densities are

�m(x′, t) = q

ρ′ δ{ρ′ − ρqg(t)}δ{φ′ − φqg(t)}δ{z′}, (52)

�e(x′, t) = g

ρ′ δ{ρ′ − ρqg(t)}δ{φ′ − φqg(t)}δ{z′}. (53)

The vector potentials are Aout(x′) = Φm φ̂/(2πρ′) and Cout(x′) = −Φeφ̂/(2πρ′). A generic point reads x′ = ρ′ρ̂ + z′ẑ. Using
these ingredients, we integrate the right-hand side of (47), obtaining

1

c

∫

V
x′ × (�e(x′, t)Aout(x′) − �m(x′, t)Cout(x′)) d3x ′ = n(qΦm − gΦe)

2πc
ẑ, (54)

where n is the winding number representing the number of times the dyon travels its closed path around the dual solenoid. In the
derivation of (54), we have used

∫ ∞
−∞ δ(z′)dz′ = 1,

∫ ∞
−∞ z′δ(z′)dz′ = 0,

∫ ∞
R δ{ρ′ − ρqg(t)} dρ′ = Θ{ρqg(t) − R} = 1 (ρqg > R)

and
∮
C δ{φ′−φqg(t)} dφ′ = n. Therefore, (54) represents the accumulated electromagnetic angular momentum of the dyon–solenoid

configuration

Lqg = n(qΦm − gΦe)

2πc
ẑ, (55)

which states that every time the dyon goes around the dual solenoid, the dyon–solenoid configuration acquires the electromagnetic
angular momentum L(n=1)

qg =(qΦm − gΦe)ẑ/(2πc) and therefore after n times this configuration accumulates the electromagnetic

angular momentum given by (55), which can compactly be written as Lqg = nL(n=1)
qg . Equations (40) and (55) yield

Lqg = ẑ
2πc

∮

C
(qAout + gCout) · dx, (56)
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which is gauge invariant on account of the gauge invariance of the circulation of the potentials Aout and Cout. The accumulated
electromagnetic angular momentum Lqg depends on the circulation of the potentials outside the dual solenoid. Using (43), we can
see that (56) can be expressed as

Lqg = ẑ
2πc

∫

S
(qBin − gEin) · dS, (57)

which states that the accumulated electromagnetic angular momentum Lqg outside the dual solenoid depends on the fluxes of the
electric and magnetic fields inside this dual solenoid.

As a theoretical application of the electromagnetic angular momentum Lqg , consider a dyon having the elementary charges
q = q0 and g = g0. Furthermore, consider the Schwinger-Zwanziger quantisation condition [7,18]: q1g2 − q2g1 = Nh̄c/2 (N
integer), with a solution given by q = neq0 and g = ngg0, where ne and ng are integers, q0 = e where e is the electron’s charge and
g0 = e/(2α) where α is the fine structure constant. Therefore, using the elementary charges q0 = e and g0 = e/(2α) together with
the fluxes Φe = πR2E and Φm = πR2B inside the dual solenoid we obtain Lq0g0 = eR2[B − E/(2α)]/(2c) for the z-component
of the corresponding electromagnetic angular momentum.

8 Potential interpretation versus field interpretation

Equations (56) and (57) suggest two different interpretations of the physical origin of the electromagnetic angular momentum Lqg .
Let us combine both equations to obtain the relation

ẑ
2πc

∮

C
(qAout + gCout) · dx = Lqg = ẑ

2πc

∫

S
(qBin − gEin) · dS. (58)

The first interpretation, which we will call the potential explanation, is supported by the first equality in (58). This states that Aout

and Cout locally act through their circulations on the dyon originating Lqg . In other words, Aout and Cout exist in each point of
the trajectory of the dyon and therefore they locally act on the dyon producing Lqg . The second interpretation, which we will call
the field explanation, is supported by the second equality in (58), which states that the fields Bin and Ein nonlocally act through
their fluxes on the dyon originating Lqg because the dyon and the fields Bin and Ein lie in different regions. Put in other words:
Bin and Ein exist inside the dual solenoid and not in each point of the trajectory of the dyon outside the solenoid and therefore Bin

and Ein nonlocally act on the dyon producing Lqg . We do not support the potential explanation for the following arguments: the
potentials Aout and Cout are gauge-dependent and therefore the quantity qAout + gCout cannot represent a physical quantity. The
Stokes theorem applied to the dyon–solenoid configuration takes the form (see (44))

ẑ
2πc

∮

Ck>∂S
(qAout + gCout) · dx = · · · = ẑ

2πc

∮

C2>∂S
(qAout + gCout) · dx

= ẑ
2πc

∮

C1>∂S
(qAout + gCout) · dx = Lqg = ẑ

2πc

∫

S
(qBin − gEin) · dS, (59)

where the different dyon paths C1 > ∂S,C2 > ∂S, . . . ,Ck > ∂S are homotopically equivalent. Considering the equalities of the
left-hand side of Lqg in (59), there is a manifest ambiguity because we cannot distinguish if Lqg is connected with the circulation
of qAout + gCout along C1 > ∂S or along C2 > ∂S or along Ck > ∂S. Stated differently, qAout + gCout is ambiguous due to the
gauge dependence of the potentials and the circulations of qAout + gCout is ambiguous due to the spatial delocalisation. Thus, the
potential explanation is unsatisfactory. We admit the field explanation because the last equality in (59) states that Lqg outside the
dual solenoid is unambiguously connected with the fluxes of Bin and Ein confined inside the dual solenoid. Since the dyon as well
as the magnetic and electric fields lie in different spatial regions, they nonlocally interact to produce Lqg . In other words, (59) tell
us that the magnetic and electric fluxes do not locally affect the trajectory of the dyon.

9 Duality invariance of the electromagnetic angular momentum Lqg

The electromagnetic angular momentum Lqg in (55) is clearly invariant under the simultaneous application of the set formed by
the duality transformations of the charges: q → g and g → −q and the set formed by the duality transformations of the fluxes:
Φm → −Φe and Φe → Φm . Both sets of transformations are independent because the charges q and g of the dyon are specified
independently from the fluxes Φe and Φm of the dual solenoid. However, both sets can be unified by means of a generalised set of
U (1) electromagnetic duality transformations given by

q + ig = e−iθ (q ′ + ig′), Φe + iΦm = e−iθ (Φ ′
e + iΦ ′

m

)
, (60)
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where θ is an arbitrary real angle. The transformations in (60) can explicitly be written as

q = q ′ cos θ + g′ sin θ, g = −q ′ sin θ + g′ cos θ, (61)

Φe = Φ ′
e cos θ + Φ ′

m sin θ, Φm = −Φ ′
e sin θ + Φ ′

m cos θ, (62)

and their corresponding inverse transformations read

q ′ = q cos θ − g sin θ, g′ = q sin θ + g cos θ, (63)

Φ ′
e = Φe cos θ − Φm sin θ, Φ ′

m = Φe sin θ + Φm cos θ. (64)

From (61) and (62), it follows that the quantity qΦm − gΦe is duality invariant

qΦm − gΦe = q ′Φ ′
m − g′Φ ′

e. (65)

Considering (65), we can show that the electromagnetic angular momentum of the dyon–solenoid configuration is duality invariant:
n(qΦm − gΦe)ẑ/(2πc) = Lqg = n(q ′Φ ′

m − g′Φ ′
e)ẑ/(2πc). Furthermore, by exploiting the arbitrariness of the angle θ , we can

demonstrate that Lqg = n(q ′Φ ′
m − g′Φ ′

e)ẑ/(2πc) describes both Lq = nqΦm ẑ/(2πc) and Lg = −ngΦe ẑ/(2πc).
We have two procedures to obtain Lq from Lqg . In the first procedure, we assume that all dyons have the same ratio of magnetic

to electric charge: g′/q ′= constant. Since θ is arbitrary, we can write

g′

q ′ = tan θ, (66)

which implies θ = tan−1(g′/q ′). The condition (66) and the second transformation in (61) imply the vanishing of the magnetic
charge of the dyon g = 0 and therefore the transformations in (63) become

q ′ = q cos θ, g′ = q sin θ. (67)

(Alternatively, we can demand that g = 0 and then the transformations in (63) imply the relations in (67) which yields (66).) The
relations in (67) combine with the transformations in (64) to obtain

q ′Φ ′
m − g′Φ ′

e = q(−Φ ′
e sin θ + Φ ′

m cos θ) = qΦm, (68)

and making use of this relation it follows that Lqg becomes Lq ,

Lqg =
[
n(q ′Φ ′

m − g′Φ ′
e)ẑ

2πc

]

g′=q ′ tan θ

= nqΦm

2πc
ẑ = Lq . (69)

In the second procedure, we consider the ratio of the electric to magnetic fluxes which is a constant quantity. Since θ is arbitrary,
we can write

Φ ′
e

Φ ′
m

= − tan θ, (70)

which implies θ = tan−1(−Φ ′
e/Φ

′
m). The condition (70) and the first transformation in (62) imply the vanishing of the electric flux

Φe = 0 of the dual solenoid. Thus, the transformations in (64) become

Φ ′
e = −Φm sin θ, Φ ′

m = Φm cos θ, (71)

which combine the transformations in (63) to yield the result

q ′Φ ′
m − g′Φ ′

e = (q ′ cos θ + g′ sin θ)Φm = qΦm, (72)

which implies that Lqg becomes again Lq

Lqg =
[
n(q ′Φ ′

m − g′Φ ′
e)ẑ

h̄c

]

Φ ′
e=−Φ ′

m tan θ

= nqΦm

2πc
ẑ = Lq . (73)

Analogously, we have two ways to obtain Lg from Lqg . In the first way, we assume again that all dyons satisfy the condition g′/q ′=
constant. Considering that the angle θ is arbitrary, we can write

g′

q ′ = − cot θ, (74)

which implies θ = cot−1(−g′/q ′). The relation (74) and the first transformation in (61) imply the vanishing of the electric charge
of the dyon q = 0 and therefore the transformations in (63) become

q ′ = −g sin θ, g′ = g cos θ. (75)

123



  157 Page 12 of 26 Eur. Phys. J. Plus         (2022) 137:157 

Using these relations and the transformation in (64), we obtain

q ′Φ ′
m − g′Φ ′

e = −g(Φ ′
e cos θ + Φ ′

m sin θ) = −gΦe, (76)

which is used in (65) to show that Lqg becomes Lg

Lqg =
[
n(q ′Φ ′

m − g′Φ ′
e)ẑ

2πc

]

g′=−q ′ cot θ

= −ngΦe

2πc
ẑ = Lg. (77)

In the second way, we choose the angle θ to satisfy

Φ ′
e

Φ ′
m

= cot θ, (78)

which implies θ = cot−1(Φ ′
e/Φ

′
m). The condition (78) and the second transformation in (62) imply Φm = 0 and thus the transfor-

mations in (64) become

Φ ′
e = Φe cos θ , Φ ′

m = Φe sin θ. (79)

These relations together with the transformations in (63) yield the relation

q ′Φ ′
m − g′Φ ′

e = −(−q ′ sin θ + g′ cos θ)Φe = −gΦe, (80)

which is used in (65) to show that Lqg becomes again Lg

Lqg =
[
n(q ′Φ ′

m − g′Φ ′
e)ẑ

2πc

]

Φ ′
e=Φ ′

m cot θ

= −ngΦe

2πc
ẑ = Lg. (81)

We have then demonstrated that duality symmetry of the electromagnetic angular momentum Lqg unifies the apparently dissimilar
electromagnetic angular momenta Lq and Lg . We then justify our claim that Lg is dual to Lq .

10 Interpretations of Lq and Lg in the light of duality

In addition to the B-explanation for the origin of the electromagnetic angular momentum Lq , the duality symmetry of the electro-
magnetic angular momentum Lqg allows us to give two further interpretations for the electromagnetic angular momentum Lq . To
see this, we observe that the relations in (67), which hold when g = 0, imply the beautiful relation

q =
√
q ′2 + g′2. (82)

How should this relation be interpreted? Answer: a particle with the electric charge q can be thought either as (i) a dyon with a
non-vanishing electric charge q and a vanishing magnetic charge g = 0 or as (ii) a dyon with the electric charge q ′ = q cos θ and
the magnetic charge g′ = q sin θ (which imply (82)). Duality symmetry tells us that it is a matter of mere convention to adopt either
(i) or (ii). Multiplying (82) by the magnetic flux Φm we obtain qΦm = √

q ′2 + g′2 Φm , which implies

qΦm

2πc
ẑ =

√
q ′2 + g′2 Φm

2πc
ẑ. (83)

Analogously, from (71) it follows Φm = √
Φ ′2

e + Φ ′2
m which implies qΦm = q

√
Φ ′2

e + Φ ′2
m and therefore

qΦm

2πc
ẑ = q

√
Φ ′2

e + Φ ′2
m

2πc
ẑ. (84)

The relations (83) and (84) provide three equivalent interpretations for the origin of Lq :

(i) Lq = qΦm ẑ/(2πc) is originated by the nonlocal action of the magnetic flux Φm on an electric charge q (B-explanation)
(ii) Lq = √

q ′2 + g′2 Φm ẑ/(2πc) is originated by the nonlocal action of the magnetic flux Φm on a dyon possessing the electric
charge q ′ = q cos θ and the magnetic charge g′ = q sin θ .

(iii) Lq = q
√

Φ ′2
e + Φ ′2

m ẑ/(2πc) is originated by the nonlocal action of the fluxes Φ ′
e = −Φm sin θ and Φ ′

m = Φm cos θ on the
electric charge q of a dyon.

Analogously, in addition to the E-explanation for the origin of the electromagnetic angular momentum Lg , the duality symmetry
of Lqg provides two other interpretations for Lg . The way to arrive at the three interpretations for Lg is similar to that leading to
the interpretations (i)-(iii). After some calculation, we can obtain
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− gΦe

2πc
ẑ = −

√
q ′2 + g′2 Φe

2πc
ẑ, (85)

−gΦe

2πc
ẑ = −g

√
Φ ′2

e + Φ ′2
m

2πc
ẑ. (86)

On the basis of these relations, we can conclude that

(i′) Lg = −gΦe ẑ/(2πc) is originated by the nonlocal action of the electric flux Φe on a magnetic charge g (E-explanation).
(ii′) Lg = −√

q ′2 + g′2 Φe ẑ/(2πc) is originated by the nonlocal action of the electric flux Φe on a dyon possessing the electric
charge g′ = g cos θ and the magnetic charge q ′ = −g sin θ .

(iii′) Lg = −g
√

Φ ′2
e + Φ ′2

m ẑ/(2πc) is originated by the nonlocal action of the fluxes Φ ′
m = Φe sin θ and Φ ′

e = Φe cos θ on the
magnetic charge g of a dyon.

11 Does the radiation from the dyon affect the electromagnetic angular momentum Lqg?

On the basis of the discussion given here for the electromagnetic angular momentum Lqg , the answer to the question in the title of
this section is in the negative. In fact, we have seen that Lqg being a topological invariant does not depend on the dynamics of the
encircling dyon which implies that Lqg is insensitive to the electric and magnetic fields produced by the motion of the encircling
dyon and in particular to their radiation fields. This is particularly striking. The fact that the radiation emitted by the dyon does
not affect Lqg is hard to understand from a physical point of view. In our formal treatment this means that the piece LR of Lqg

given by (48) must be zero. However, the explicit demonstration that LR = 0 is extremely laborious because this radiative piece
involves the Liénard–Wiechert fields of the encircling dyon whose determination turns out to be too cumbersome—as is well known,
there are few nontrivial cases for which the Liénard–Wiechert fields can explicitly be calculated. In Appendix C, we obtain the
Liénard–Wiechert fields of a non-relativistic dyon in uniform circular motion. As expected, these fields are shown to depend on an
expression for the retarded time which implicitly depends on the retarded time itself. However, in Appendix D we show how we
can eliminate the implicit dependence of the retarded time and use this result in Appendix E to show that LR = 0 when the dyon
is in uniform circular motion. It is pertinent to note that Appendices C, D and E describe long and laborious calculations. They are
required in our treatment, mainly for consistency reasons. The short answer to the question in the title this section is: no because
Lqg is a topological quantity.

12 Discussion: quantum mechanics enters into scene

We have seen that if the curve C encircles n times an electric solenoid then topology and classical electrodynamics conspire to
produce the relation (15):

∮
C>∂S Cout · dx = − ∫

S Ein · dS. Let us multiply this relation by the non-vanishing constant K1,

K1

∮

C>∂S
Cout · dx = −K1

∫

S
Ein · dS. (87)

If K1 = g/(2πc), then (87) becomes the z-component of the electromagnetic angular momentum Lg:

Lg = g

2πc

∮

C>∂S
Cout · dx = − q

2πc

∫

S
Ein · dS = −ngΦe

2πc
, (88)

If K1 = g/(h̄c), then (87) becomes the dual of the Aharonov–Bohm (DAB) phase [5,6]:

δDAB = g

h̄c

∮

C>∂S
Cout · dx = − g

h̄c

∫

S
Ein · dS = −ngΦe

h̄c
. (89)

Accordingly, topology, classical electrodynamics and quantum mechanics conspire to produce the DAB phase. Both the classical
quantity Lg and the quantum quantity δDAB satisfy the linear relation

δDAB = 2π

h̄
Lg, (90)

which exhibits the same form than that corresponding to the charge–solenoid configuration [3,4]: δAB = 2πLq/h̄. Both Lg and
δDAB are determined by the circulation of Cout whose topological and nonlocal features are implicit in (87). It follows that these
features are translated to both the classical quantity Lg and the quantum quantity δDAB and therefore the claim that the former should
be considered the classical counterpart of the latter naturally arises and (90) supports this claim.

By the same token, if the curve C encircles n times a dual solenoid then topology and electrodynamics with magnetic charges
work together to produce the duality-invariant relation (43):

∮
C>∂S(Cout + Cout) · dx = ∫

S(Bin − Ein) · dS, which is then multiplied
by the non-vanishing constant K2 to obtain the relation

123



  157 Page 14 of 26 Eur. Phys. J. Plus         (2022) 137:157 

K2

∮

C>∂S
(qAout + gCout) · dx = Lqg = K2

∫

S
(qBin − gEin) · dS. (91)

If K2 = 1/(2πc), then (91) becomes the z-component of the electromagnetic angular momentum Lqg:

Lqg = 1

2πc

∮

C>∂S
(qAout + gCout) · dx = 1

2πc

∫

S
(qBin − gEin) · dS = n(qΦm − gΦe)

2πc
, (92)

If K2 = 1/(h̄c), then (91) becomes the duality-invariant quantum phase [8]:

δD = 1

h̄c

∮

C>∂S
(qAout + gCout) · dx = 1

h̄c

∫

S
(qBin − gEin) · dS = n(qΦm − gΦe)

h̄c
. (93)

Therefore, topology, classical electrodynamics and quantum mechanics conspire to produce the duality-invariant quantum phase
δD. Both the classical quantity Lqg and the quantum quantity δD satisfy the linear relation

δD = 2π

h̄
Lqg. (94)

Since both Lqg and δD are given in terms of the circulations of Aout and Cout and these involve the topological and nonlocal features
implicit in (91), these features are translated to both the classical electromagnetic angular momentum Lqg and the quantum phase
δD. Therefore, we claim that former should be considered the classical counterpart of the latter which is supported by (94).

13 Conclusion

In this paper, we have extended some of the ideas presented in [1] concerning the topology and nonlocality of the electromagnetic
angular momentum Lq = nqΦm/(2πc). In the first part, we have proved that the dual of Lq reads Lg = [gẑ/(2πc)] ∮C>∂S Cout ·dx =
−[gẑ/(2πc)] ∫S Bin · dS = −ngΦe/(2πc). This is the electromagnetic angular momentum of the configuration formed by a
magnetic charge g encircling an infinitely long electric solenoid enclosing a uniform electric flux Φe. We have shown that Lg is
topological because it depends on a winding number and is nonlocal because the electric field inside the electric solenoid acts on the
magnetic charge in regions where this field does not exist. We have argued that Lg should be considered the classical counterpart
of the dual of the AB phase introduced in [5]. In the second part, we have showed that the electromagnetic angular momentum
Lqg = [ẑ/(2πc)] ∮C>∂S(qAout + gCout) ·dx = [ẑ/(2πc)] ∫S(Bin −Ein) ·dS = n(qΦm − gΦe)ẑ/(2πc) of the configuration formed
by a dyon encircling an infinitely long dual solenoid enclosing uniform electric and magnetic fluxes is topological because it depends
on a winding number, is nonlocal because the electric and magnetic fields of this dual solenoid act on the dyon in regions where these
fields do not exist, and is invariant under electromagnetic duality transformations. We have shown that the duality symmetry of Lqg

allows us to unify both Lq and Lg . This symmetry also allows us to give different physical interpretations for these electromagnetic
angular momenta. We have argued that Lqg should be considered as the classical counterpart of the duality-invariant quantum phase
introduced in [8]. We have also demonstrated, by means of an explicit calculation, that the radiative effects of the Liénard–Wiechert
fields of the non-relativistic dyon moving in uniform circular motion around the dual solenoid do not affect Lqg . Our detailed
discussion on the electromagnetic angular momenta Lg and Lqg has the purpose of calling attention that topology, nonlocality and
duality can consistently coexist in classical electrodynamics.

Data Availability Statement No data sets were generated or analysed in this paper.

Appendix A. Poynting theorem for two sets of Maxwell’s equations and the proof of (45)

Consider two independent sets of electromagnetic equations. The first set describes the time-dependent electric and magnetic fields
E(x, t) and B(x, t) produced by the electric and magnetic charge densities �e(x, t) and �m(x, t) and the electric and magnetic current
densities J e(x, t) and J m(x, t). The corresponding Maxwell equations read

∇ · E = 4π�e, ∇ · B = 4π�m, ∇ × E + 1

c

∂B
∂t

= −4π

c
J m, ∇ × B − 1

c

∂E
∂t

= 4π

c
J e. (A1)

The second set describes the electric and magnetic fields E(x, t) and B(x, t) produced by the charge and current densities
ρe(x, t), ρm(x, t), Je(x, t) and Jm(x, t) and satisfying the Maxwell equations

∇ · E = 4πρe, ∇ · B = 4πρm, ∇ × E + 1

c

∂B
∂t

= −4π

c
Jm, ∇ × B − 1

c

∂E
∂t

= 4π

c
Je, (A2)
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We shall now obtain the Poynting theorem of the system formed by (A1) and (A2). Using these equations we can directly show that
the divergence to the vector E × B + E × B yields the identity

∇ · (E × B + E × B) = −4π

c
(E · J e + E · Je + B · J m + B · Jm) − 1

c

∂

∂t

(
E · E + B · B

)
, (A3)

which implies the Poynting theorem

∇ · S + ∂U

∂t
= −E · J e − E · Je − B · J m − B · Jm . (A4)

where the interaction energy density is given by

U = 1

4π

(
E · E + B · B

)
, (A5)

and the interaction Poynting vector by

S = c

4π
(E × B + E × B). (A6)

Equations (A4)–(A6) are of general character. In particular, they hold when the electric and magnetic are time-independent E(x)

and B(x) and produced by the current densities Je(x) and Jm(x) satisfying the time-independent equations ∇ · E = 0,∇ ×
E = −4πJm/c,∇ · B = 0,∇ × B = 4πJe/c. For this case, the corresponding electromagnetic momentum density is given by
g = (E × B + E × B)/(4πc) and its associated electromagnetic angular momentum density by l = x × (E × B + E × B)/(4πc),
whose volume integration yields the electromagnetic angular momentum given in (45).

Appendix B. Proof of (46)

A direct vector calculation leads to the identities

∂k
[
εsqi xq(δikEm Am − Ek Ai − Ei Ak)

] = −4π�eε
sqi xq Ai + εsqi xqEk(∂k Ai − ∂i Ak)

+εsqi xq A
k(∂iEk − ∂kEi ) − εsqi xqEi∂k Ak

= −4π
[
�ex × A

]s + [
x × (E × B)

]s

−[
x × {(∇ × E) × A}]s − [

x × E(∇ · A)
]s

. (B1)

∂k
[
εsqi xq(δikBmC

m − BkCi − BiCk)
] = −4π�m εsqi xqCi + εsqi xqBk(∂kCi − ∂iCk)

+εsqi xqC
k(∂iBk − ∂kBi ) − εsqi xqBi∂

kCk

= −4π
[
�m x × C

]s + [
x × (E × B)

]s

−[
x × {(∇ × B) × C}]s − [

x × B(∇ · C)
]s

. (B2)

The identities (B1) and (B2) imply

[x × (E × B + E × B)]s = [x × (�eA + �mC)]s + [
x × {(∇ × E) × A + (∇ × B) × C}]s

+ [x × {E(∇ · A) + B(∇ · C)}]s
+ ∂k

[
εsqi xq(δik(Em Am + BmC

m) − Ek Ai − BkCi − Ei Ak − BiCk)
]s

. (B3)

Volume integration of (B3) gives

1

4πc

∫

V
[x × (E × B + E × B)]s d3x = 1

c

∫

V
[x × (�eA + �mC)]sd3x

+ 1

4πc

∫

V

[
x × {(∇ × E) × A + (∇ × B) × C}]sd3x

+ 1

4πc

∫

V
[x × [E(∇ · A) + B(∇ · C)]s d3x

+ 1

4πc

∮

S
[x × {n̂(E · A + B · C) − A(n̂ · E) − C(n̂ · B) − E(n̂ · A) − B(n̂ · C)}]s dS,

(B4)

where the volume integral of the last term on the right-hand side of (B3) has been transformed into a surface integral by making the
replacements ∂k → (n̂)k and

∫
V d3x → ∮

S dS. Equation (B4) is equivalent to (46).
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Appendix C. The Liénard–Wiechert fields of a non-relativistic dyon in uniform circular motion

The explicit form of the Liénard–Wiechert fields of an arbitrarily moving dyon was first derived by one of us [19,20]. These fields
describe the retarded solutions of the Maxwell’s generalised Eq. (A1) for the case of a point dyon in arbitrary motion and can be
expressed as

E =
[
q(R̂−β) − gβ × R̂
γ 2R2(1−R̂ · β)3

+ qR̂ × ((R̂−β) × β̇)

cR(1 − R̂ · β)3
+ g(1−R̂ · β)R̂ × β̇ + g(R̂ · β̇)R̂ × β

cR(1 − R̂ · β)3

]

r

, (C1)

B=
[
g(R̂−β) + qβ × R̂
γ 2R2(1 − R̂ · β)3

+ gR̂ × ((R̂−β) × β̇)

cR(1 − R̂ · β)3
− q(1−R̂ · β)R̂ × β̇ + q(R̂ · β̇)R̂ × β

cR(1 − R̂ · β)3

]

r

, (C2)

where R = x − xqg(tr ), with x being the field point and xqg the position of the dyon, R = |x − xqg(tr )|, R̂ = R/R, β =
ẋqg(tr )/c = (1/c)dxqg/dtr , β̇(tr ) = dβ/dtr , γ = 1/

√
1 − β2, and the square brackets [ ]r indicate that the enclosed quantities

are to be evaluated at the retarded time tr = t − R(tr )/c. The terms varying as 1/R2 are the velocity fields, and the terms varying
as 1/R are the acceleration fields. Let us now assume that the dyon is moving with non-relativistic velocity β << 1. In this case,
γ ≈ 1, (1 − R̂ · β) ≈ 1, and (R̂ − β) ≈ R̂, and the fields (C1) and (C2) reduce to the expressions

E =
[
qR̂ − gβ × R̂

R2 + qR̂ × (R̂ × β̇)

cR + gR̂ × β̇ + g(R̂ · β̇)R̂ × β

cR

]

r

, (C3)

B =
[
gR̂ + qβ × R̂

R2 + gR̂ × (R̂ × β̇)

cR − qR̂ × β̇ + q(R̂ · β̇)R̂ × β

cR

]

r

. (C4)

The fields in (C3) and (C4) are suitable to obtain the fields due to a non-relativistic dyon in uniform circular motion. We assume
that the dyon lies in the x-y plane and moving in a circle of fixed radius a around the origin. The position, velocity and acceleration
of the dyon at time t are given by

xqg = a[cos(ωt)x̂ + sin(ωt)ŷ], (C5)

ẋqg = ωa[− sin(ωt)x̂ + cos(ωt)ŷ], (C6)

ẍqg = −ω2a[cos(ωt)x̂ + sin(ωt)ŷ], (C7)

where ω is the constant angular velocity. On the other hand, at time t we also have

R = [x − a cos(ωt)]x̂ + [y − a sin(ωt)]ŷ + zẑ, (C8)

R =
√
x2 + y2 + z2 + a2 − 2a[x cos(ωt) + y sin(ωt)]. (C9)

We also note that the fields (C3) and (C4) are invariant under the dual changes q → g and g → −q, a property that will later be
used. The next step is to transform (C5)–(C9) in cylindrical coordinates and with respect to the field coordinates ρ, φ and z. On
the other hand, the source coordinates specifying the position of the dyon at time t read a, ωt, and 0. Inserting x = ρ cos φ, y =
ρ sin φ, x̂ = cos φρ̂ − sin φφ̂, and ŷ = sin φρ̂ + cos φφ̂ in (C5)–(C9) and after some simplifications, we obtain

xqg = a[cos(φ − ωt)ρ̂ − sin(φ − ωt)φ̂], (C10)

ẋqg = ωa[sin(φ − ωt)ρ̂ + cos(φ − ωt)φ̂], (C11)

ẍqg = −ω2a[cos(φ − ωt)ρ̂ − sin(φ − ωt)φ̂], (C12)

R = [ρ − a cos(φ − ωt)]ρ̂ + a sin(φ − ωt)φ̂ + zẑ, (C13)

R =
√

ρ2 + z2 + a2 − 2ρa cos(φ − ωt). (C14)

Using (C10)–(C14) and performing the specified operations, we obtain

R̂
R2 = [ρ − a cos(φ − ωt)]ρ̂ + a sin(φ − ωt)φ̂ + zẑ

[ρ2 + z2 + a2 − 2ρa cos(φ − ωt)]3/2 , (C15)

β × R̂
R2 = ωa

c

z cos(φ − ωt)ρ̂ − z sin(φ − ωt)φ̂ − [ρ cos(φ − ωt) − a]ẑ
[ρ2 + z2 + a2 − 2ρa cos(φ − ωt)]3/2 , (C16)

R̂ × (R̂ × β̇)

R = ω2a

c

[aρ sin2(φ − ωt) + z2 cos(φ − ωt)]ρ̂ − sin(φ − ωt)[ρ2 − ρa cos(φ − ωt) + z2]φ̂
[ρ2 + z2 + a2 − 2ρa cos(φ − ωt)]3/2

−ω2a

c

z[ρ cos(φ − ωt) − a]ẑ
[ρ2 + z2 + a2 − 2ρa cos(φ − ωt)]3/2 , (C17)
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R̂ × β̇

R = −ω2a

c

z sin(φ − ωt)ρ̂ + z cos(φ − ωt)φ̂ − ρ sin(φ − ωt)ẑ
ρ2 + z2 + a2 − 2ρa cos(φ − ωt)

, (C18)

(R̂ · β̇)R̂ × β

R = ω3a2

c2

[ρ cos(φ−ωt) − a][z cos(φ−ωt)ρ̂ − z sin(φ−ωt)φ̂ − [ρ cos(φ−ωt) − a]ẑ]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωt)]3/2 . (C19)

Now, in cylindrical coordinates we can decompose the fields (C3) and (C4) in the following form:

E = (Ev
ρ + Ea

ρ )ρ̂ + (Ev
φ + Ea

φ)φ̂ + (Ev
z + Ea

z )ẑ, (C20)

B = (Bv
ρ + Ba

ρ)ρ̂ + (Bv
φ + Ba

φ)φ̂ + (Bv
z + Ba

z )ẑ, (C21)

where Ev
ρ , Ev

φ, Ev
z andBv

ρ,Bv
φ,Bv

z are the components of the velocity fields (those varying as 1/R2) and Ea
ρ , Ea

φ, Ea
z andBa

ρ,Ba
φ,Ba

z are
the components of the acceleration fields (those varying as 1/R). Using (C15)–(C19) evaluated at the retarded time tr = t −R(tr )/c
and (C3), we find the components of the electric field of the encircling dyon

Ev
ρ = q

[ρ − a cos(φ − ωtr )]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 − g

ωa

c

z cos(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 , (C22)

Ev
φ = q

a sin(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 + g
ωa

c

z sin(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 , (C23)

Ev
z = q

z

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 + g
ωa

c

[ρ cos(φ − ωtr ) − a]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 , (C24)

Ea
ρ = q

ω2a

c2

aρ sin2(φ − ωtr ) + z2 cos(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 + g
ω3a2

c3

z cos(φ − ωtr )(ρ cos(φ − ωtr ) − a)

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2

−g
ω2a

c2

z sin(φ − ωtr )

ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )
, (C25)

Ea
φ = −q

ω2a

c2

sin(φ − ωtr )[ρ2 − ρa cos(φ − ωtr ) + z2]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 − g

ω3a2

c3

z sin(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2

−g
ω2a

c2

z cos(φ − ωtr )

ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )
, (C26)

Ea
z = −q

ω2a

c2

z[ρ cos(φ − ωtr ) − a]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 − g

ω3a2

c3

[ρ cos(φ − ωtr ) − a]2

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2

+g
ω2a

c2

ρ sin(φ − ωtr )

ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )
. (C27)

Using the dual changes q → g and g → −q in (C22)–(C27), we obtain the corresponding components of the magnetic field of the
encircling dyon

Bv
ρ = g

[ρ − a cos(φ − ωtr )]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 + q

ωa

c

z cos(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 , (C28)

Bv
φ = g

a sin(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 − q
ωa

c

z sin(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 , (C29)

Bv
z = g

z

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 − q
ωa

c

[ρ cos(φ − ωtr ) − a]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 , (C30)

Ba
ρ = g

ω2a

c2

aρ sin2(φ − ωtr ) + z2 cos(φ − ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 − q
ω3a2

c3

z cos(φ − ωtr )(ρ cos(φ − ωtr ) − a)

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2

+q
ω2a

c2

z sin(φ − ωtr )

ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )
, (C31)

Ba
φ = −g

ω2a

c2

sin(φ − ωtr )[ρ2 − ρa cos(φ − ωtr ) + z2]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 + q

ω3a2

c3

z sin(φ−ωtr )

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2

+q
ω2a

c2

z cos(φ − ωtr )

ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )
, (C32)

Ba
z = −g

ω2a

c2

z[ρ cos(φ − ωtr ) − a]
[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2 + q

ω3a2

c3

[ρ cos(φ − ωtr ) − a]2

[ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )]3/2

−q
ω2a

c2

ρ sin(φ − ωtr )

ρ2 + z2 + a2 − 2ρa cos(φ − ωtr )
. (C33)
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Equations (C20)–(C33) describe the components of the fields of a non-relativistic dyon in uniform circular motion expressed in
terms of the retarded time tr = t − R(tr )/c = t − |x − xqg(tr )|/c, which implicitly depends on the retarded time itself.

Appendix D. Eliminating the implicit dependence of the retarded time in the fields

In this appendix, we will specify the conditions that allow us to eliminate the implicit dependence of the retarded time in the fields
of the dyon–solenoid configuration when the dyon is in uniform circular motion, i.e., tr = t − |x − xqg(tr )|/c → tr = t − |x|/c.
Since the retarded time in the field components (C22)–(C33) is only present in the functions sin(φ − ωtr ) and cos(φ − ωtr ), these
functions are our quantities of interest. We will see that under certain conditions we can make the replacements sin[φ − ω(tr =
t − |x − xqg(tr )|/c)] → sin[φ − ω(tr = t − |x|/c)] and cos[φ − ω(tr = t − |x − xqg(tr )|/c)] → cos[φ − ω(tr = t − |x|/c)] and
thus eliminate the implicit dependence of the retarded time in the fields.

We now follow an argument similar to that given by Eyges [21]. Using the identities sin(A − B) = sin A cos B − cos A sin B
and cos(A − B) = sin A sin B + cos A cos B, it follows

sin(φ − ωtr ) = sin φ cos(ωtr ) − cos φ sin(ωtr ), (D1)

cos(φ − ωtr ) = sin φ sin(ωtr ) + cos φ cos(ωtr ), (D2)

and inserting the retarded time tr = t − |x − xqg(tr )|/c we obtain

sin(ωtr ) = sin

[
ω

(
t − |x − xqg(tr )|

c

)]
, cos(ωtr ) = cos

[
ω

(
t − |x − xqg(tr )|

c

)]
. (D3)

The size of the considered distribution is of order a which is the radius of the orbit of the dyon. If a is sufficiently small, then we
can make a Taylor expansion in xqg(tr ) to the first order in the trigonometric functions in (D3) obtaining

sin(ωtr ) ≈ sin

[
ω

(
t − |x|

c

)]
+ xqg(tr ) · ∇ sin

[
ω

(
t − |x|

c

)]
, (D4)

sin(ωtr ) ≈ cos

[
ω

(
t − |x|

c

)]
+ xqg(tr ) · ∇ cos

[
ω

(
t − |x|

c

)]
. (D5)

From (C10), it follows xqg(tr ) = a[cos(φ − ωtr )ρ̂ − sin(φ − ωtr )φ̂], which is used together with ∇ = [∂/∂ρ]ρ̂ + (1/ρ)[∂/∂φ]φ̂ +
[∂/∂z]ẑ and |x| = √

ρ2 + z2 to obtain

sin(ωtr ) ≈ sin

[
ω

(
t − |x|

c

)]
− ρaω

c|x| cos

[
ω

(
t − |x|

c

)]
cos(ωtr ), (D6)

cos(ωtr ) ≈ cos

[
ω

(
t − |x|

c

)]
+ ρaω

c|x| sin

[
ω

(
t − |x|

c

)]
sin(ωtr ). (D7)

Using (D6) and (D7) in (D1) and (D2) together with the identities sin(A − B) = sin A cos B − cos A sin B and cos(A − B) =
sin A sin B + cos A cos B, we obtain

sin(φ − ωtr ) ≈ sin

[
φ − ω

(
t − |x|

c

)]
+ ρβ

|x| cos

[
φ − ω

(
t − |x|

c

)]
cos(φ − ωtr ), (D8)

cos(φ − ωtr ) ≈ cos

[
φ − ω

(
t − |x|

c

)]
− ρβ

|x| sin

[
φ − ω

(
t − |x|

c

)]
cos(φ − ωtr ), (D9)

where β = |ẋqg|/c = ωa/c with |ẋqg| = ωa being the magnitude of the velocity of the dyon. The ratio of the second terms on the
right-hand side of (D8) and (D9) compared with their corresponding first terms is of order β. For a non-relativistic dyon, β << 1
and therefore the second terms on the right-hand side are much smaller compared to the first terms. Accordingly, we can write write
the approximation

sin(φ − ωtr ) ≈ sin

[
φ − ω

(
t − |x|

c

)]
, cos(φ − ωtr ) ≈ sin

[
φ − ω

(
t − |x|

c

)]
. (D10)

Using Eqs. (D10) and (C20)–(C33), it follows that in the non-relativistic approximation of the fields due to a dyon in uniform circular
motion, the retarded time can be expressed as tr = t − |x|/c where now x does not depend on the retarded time itself. This property
will allow us to integrate the associated fields given in Appendix E.
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Appendix E. Proof of LR = 0 for the dyon–solenoid configuration

Using the generalised Maxwell equations ∇ × E = −(1/c)∂B/∂t − (4π/c)J m and ∇ × B = (1/c)∂E/∂t + (4π/c)J e, we can
write Eq. (48) as

LR = 1

4πc2

∂

∂t

∫

V
x ×(E × C

)
d3x + 1

c2

∫

V
x × (J e × C

)
d3x

− 1

4πc2

∂

∂t

∫

V
x ×(B × A

)
d3x − 1

c2

∫

V
x × (J m × A

)
d3x . (E1)

We can now apply (D1) to the dyon–solenoid configuration covering all space expect the dual solenoid. Inserting the position vector
x = ρρ̂ + zẑ, the potentials outside the dual solenoid A = Aout(x) = Φm φ̂/(2πρ) and C = Cout(x) = −Φeφ̂/(2πρ), and
d3x = ρdρdφdz in (D1), we obtain

LR = − Φe

8π2c2

∂

∂t

[ ∫

V
ρρ̂ ×(E × φ̂

)
dρdφdz +

∫

V
zẑ ×(E × φ̂

)
dρdφdz

]

− Φe

2πc2

[ ∫

V
ρρ̂ ×(J e × φ̂

)
dρdφdz +

∫

V
zẑ ×(J e × φ̂

)
dρdφdz

]

− Φm

8π2c2

∂

∂t

[ ∫

V
ρρ̂ ×(B × φ̂

)
dρdφdz +

∫

V
zẑ ×(B × φ̂

)
dρdφdz

]

− Φm

2πc2

[ ∫

V
ρρ̂ ×(J m × φ̂

)
dρdφdz +

∫

V
zẑ ×(J m × φ̂

)
dρdφdz

]
. (E2)

The fields are Liénard–Wiechert fields produced by the encircling dyon which from (C20) and (C21) can be decomposed as
E = (Ev

ρ + Ea
ρ )ρ̂ + (Ev

φ + Ea
φ)φ̂ + (Ev

z + Ea
z )ẑ and B = (Bv

ρ +Ba
ρ)ρ̂ + (Bv

φ +Ba
φ)φ̂ + (Bv

z +Ba
z )ẑ where Ev

ρ , Ev
φ, Ev

z and Bv
ρ,Bv

φ,Bv
z

are the components of the velocity fields and Ea
ρ , Ea

φ, Ea
z and Ba

ρ,Ba
φ,Ba

z are the components of the acceleration fields . The currents

of the encircling dyon can be written as J e = (Je)ρ ρ̂ + (Je)φ φ̂ + (Je)z ẑ and J m = (Jm)ρ ρ̂ + (Jm)φ φ̂ + (Jm)z ẑ. Using these
results in (E2) and performing the specified operations, we obtain

LR = Φeφ̂

8π2c2

[
∂ I1
∂t

+ ∂ I2
∂t

+ ∂ I3
∂t

+ ∂ I4
∂t

]
+ Φeφ̂

2πc2 [I5 + I6] + Φm φ̂

8π2c2

[
∂ I7
∂t

+ ∂ I8
∂t

+ ∂ I9
∂t

+ ∂ I10

∂t

]

+Φm φ̂

2πc2 [I11 + I12], (E3)

where the integrals I1 − I12 are defined as

I1 =
∫

V
ρEv

ρ dρdφdz, I2 =
∫

V
ρEa

ρ dρdφdz, I3 =
∫

V
zEv

z dρdφdz, I4 =
∫

V
zEa

z dρdφdz, (E4)

I5 =
∫

V
ρ(Je)ρ dρdφdz, I6 =

∫

V
z(Je)z dρdφdz, (E5)

I7 =
∫

V
ρBv

ρ dρdφdz, I8 =
∫

V
ρBa

ρdρdφdz, I9 =
∫

V
zBv

z dρdφdz, I10 =
∫

V
zBa

z dρdφdz, (E6)

I11 =
∫

V
ρ(Jm)ρ dρdφdz, I12 =

∫

V
z(Jm)z dρdφdz, (E7)

The field components Ev
ρ , Ev

φ, Ev
z , Ea

ρ , Ea
φ, Ea

z and Bv
ρ,Bv

φ,Bv
z ,Ba

ρ,Ba
φ,Ba

z as well as the current components (Je)ρ, (Je)φ, (Je)z
and (Jm)ρ, (Jm)φ, (Jm)z should now be specified. For simplicity, we consider the fields and currents due to a dyon encircling
the dual solenoid in non-relativistic uniform circular motion along the x-y plane. More specifically, we assume that the dyon is
moving with constant angular velocity ω in a circle of fixed radius a around the dual solenoid. Field coordinates are denoted as
ρ, φ, z and the source coordinates specifying the position of the dyon are denoted as a, ωt, 0. In this case, we can use the field
components in (C23)–(C33) together with the approximation in (D10). To find the components of the current densities, we use
J e = q ẋqgδ[x −xqg(t)] and J m = gẋqgδ[x −xqg(t)] together with (C11) and δ[x −xqg(t)] = δ(ρ −a)δ(φ −ωt)δ(z)/ρ to obtain
J e = [qωa/ρ][sin(φ − ωt)ρ̂ + cos(φ − ωt)φ̂]δ(ρ − a)δ(φ − ωt)δ(z) and J m = [gωa/ρ][sin(φ − ωt)ρ̂ + cos(φ − ωt)φ̂]δ(ρ −
a)δ(φ − ωt)δ(z). Therefore,

(Je)ρ = qωa

ρ
sin(φ − ωt)δ(ρ − a)δ(φ − ωt)δ(z), (E8)

(Je)φ = qωa

ρ
cos(φ − ωt)δ(ρ − a)δ(φ − ωt)δ(z), (E9)

(Je)z = 0, (E10)
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(Jm)ρ = gωa

ρ
sin(φ − ωt)δ(ρ − a)δ(φ − ωt)δ(z), (E11)

(Jm)φ = gωa

ρ
cos(φ − ωt)δ(ρ − a)δ(φ − ωt)δ(z), (E12)

(Jm)z = 0. (E13)

Let us now proceed to evaluate the components within the brackets in (E3).

(i) Proof of ∂ I1/∂t = 0 Using (C22) and I1 in (E4), it follows

I1 = q
∫ ∞

R
ρdρ

∫ +∞

−∞
dz

∮

C

[
ρ − a cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

−g
ωa

c

∫ ∞

R
ρdρ

∮

C
dφ

∫ +∞

−∞

z cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 . (E14)

We observe that the integrand in the second term on the right-hand side is an odd function of z. Therefore, it directly follows

∫ +∞

−∞

z cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 = 0, (E15)

which is used in (E14) to obtain

I1 = q
∫ ∞

R
ρdρ

∫ +∞

−∞
dz

∮

C

[
ρ − a cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 . (E16)

Inserting the operator ∂/∂t in (E16), we obtain

∂ I1
∂t

= q
∫ ∞

R
ρ2dρ

∫ +∞

−∞
dz

∮

C

∂

∂t

⎡

⎢
⎣

[
ρ − a cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦ dφ. (E17)

The partial derivative gives

∂

∂t

⎡

⎢
⎣

[
ρ − a cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦

= −
aω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+
3aρ2ω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

−
3a2ρω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

, (E18)
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which is used in (E17) to obtain

∂ I1
∂t

= −qaω

∫ ∞

R
ρdρ

∫ +∞

−∞
dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+3qaω

∫ ∞

R
ρ3dρ

∫ +∞

−∞
dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

−3qa2ω

∫ ∞

R
ρ2dρ

∫ +∞

−∞
dz

∮

C

sin
(
φ−ω

(
t−√

ρ2+z2/c
))

cos
(
φ−ω

(
t−√

ρ2+z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

. (E19)

The azimuthal integrals can be evaluated via a Contour integration. Here, we use Mathematica to calculate them

∫ 2πn

0

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 = 0, (E20)

∫ 2πn

0

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

= 0, (E21)

∫ 2πn

0

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

= 0, (E22)

where n is the winding number. Using (E20)–(E22) in (E19), we obtain

∂ I1
∂t

= 0. (E23)

(ii) Proof of ∂ I2/∂t = 0 Using (C25) and I2 in (E4), we obtain

I2 = q
ω2a2

c2

∫ ∞

R
ρ2dρ

∫ +∞

−∞
dz

∮

C

sin2
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+q
ω2a

c2

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+g
ω3a2

c3

∫ ∞

R
ρ2dρ

∮

C
dφ

∫ +∞

−∞

z cos2
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

−g
ω3a3

c3

∫ ∞

R
ρdρ

∮

C
dφ

∫ +∞

−∞

z cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

−g
ω2a

c2

∫ ∞

R
ρdρ

∮

C
dφ

∫ +∞

−∞

z sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz

ρ2 + z2 + a2 − 2ρa cos
(
φ − ω

(
t − √

ρ2 + z2/c
)) . (E24)

Using (E15), the fourth term on the right-hand side of (E24) vanishes. We observe that the integrand in the fifth term of (24) is an
odd function of z and therefore it directly follows

∫ +∞

−∞

z sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

ρ2 + z2 + a2 − 2ρa cos
(
φ − ω

(
t − √

ρ2 + z2/c
)) = 0. (E25)
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On the other hand, the integrand in the second term of the right-hand side of (E24) is also an odd function of z and therefore

∫ +∞

−∞

z cos2
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 = 0. (E26)

Using (E15), (E25) and (E26) in (E24), we obtain

I2 = q
ω2a2

c2

∫ ∞

R
ρ2dρ

∫ +∞

−∞
dz

∮

C

sin2
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+q
ω2a

c2

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 . (E27)

Inserting the operator ∂/∂t in (E27), we obtain

∂ I2
∂t

= q
ω2a2

c2

∫ ∞

R
ρ2dρ

∫ +∞

−∞
dz

∮

C

∂

∂t

⎡

⎢
⎣

sin2
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦ dφ

+q
ω2a

c2

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

∂

∂t

⎡

⎢
⎣

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2+z2+a2−2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦ dφ. (E28)

The partial derivatives in (E28) give

∂

∂t

⎡

⎢
⎣

sin2
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦

= −
2ω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+
3aρ sin3

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

, (E29)

∂

∂t

⎡

⎢
⎣

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2+z2+a2−2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦

=
ω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2+z2+a2−2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+
3aρω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2+z2+a2−2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

, (E30)

which are used in (E28) to obtain

∂ I2
∂t

= −2qω
ω2a2

c2

∫ ∞

R
ρ2dρ

∫ +∞

−∞
dz

∮

C

sin
(
φ−ω

(
t−√

ρ2+z2/c
))

cos
(
φ−ω

(
t−√

ρ2+z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+q
3ω2a3

c2

∫ ∞

R
ρ3dρ

∫ +∞

−∞
dz

∮

C

sin3
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2
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+q
ω3a

c2

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2+z2+a2−2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+3q
ω3a2

c2

∫ ∞

R
ρ2dρ

∫ +∞

−∞
z2dz

∮

C

sin
(
φ−ω

(
t−√

ρ2+z2/c
))

cos
(
φ−ω

(
t−√

ρ2+z2/c
))

dφ

[
ρ2+z2+a2−2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

. (E31)

The third term on the right-hand side of (E31) vanishes on account of (E20), and the fourth term on the right-hand side vanishes
on account of (E22). The remaining azimuthal integrals may be evaluated via a Contour integration. Here, we use Mathematica to
calculate them

∫ 2πn

0

sin
(
φ−ω

(
t−√

ρ2+z2/c
))

cos
(
φ−ω

(
t−√

ρ2+z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 = 0, (E32)

∫ 2πn

0

sin3
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

= 0. (E33)

Using (E20), (E22) and (E32)–(E33) in (E31), we obtain

∂ I2
∂t

= 0. (E34)

(iii) Proof of ∂ I3/∂t = 0 Using (C24) and I3 in (E4), we obtain

I3 = q
∫ ∞

R
dρ

∫ +∞

−∞
z2dz

∮

C

dφ
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+g
ωa

c

∫ ∞

R
dρ

∮

C
dφ

∫ +∞

−∞

z
[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]
dz

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 . (E35)

The integrand in the second term of the right-hand side is an odd function of z, and therefore

∫ +∞

−∞

z
[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]
dz

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 = 0. (E36)

Using (E36) in (E35), we obtain

I3 = q
∫ ∞

R
dρ

∫ +∞

−∞
z2dz

∮

C

dφ
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 . (E37)

Inserting the operator ∂/∂t in (E37), we obtain

∂ I3
∂t

= q
∫ ∞

R
dρ

∫ +∞

−∞
z2dz

∮

C

∂

∂t

⎡

⎢
⎣

1
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦ dφ. (E38)

The partial derivative gives

∂

∂t

⎡

⎢
⎣

1
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦

=
3aρω sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

, (E39)
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which is used in (E38) to obtain

∂ I3
∂t

= 3qaω

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

. (E40)

The azimuthal integral vanishes on account of (E21), and therefore we obtain

∂ I3
∂t

= 0. (E41)

(iv) Proof of ∂ I4/∂t = 0. Using (C27) and I4 in (E4), we obtain

I4 = −q
ω2a

c2

∫ ∞

R
dρ

∫ +∞

−∞
z2dz

∮

C

[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]
dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

−g
ω3a2

c3

∫ ∞

R
dρ

∮

C
dφ

∫ +∞

−∞

z
[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]2

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+g
ω2a

c2

∫ ∞

R
ρdρ

∮

C
dφ

∫ +∞

−∞

z sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dz

ρ2 + z2 + a2 − 2ρa cos
(
φ − ω

(
t − √

ρ2 + z2/c
)) , (E42)

The third term on the right-hand side of (E42) vanishes on account of (E25). The integrand in the second term is an odd function of
z, and therefore

∫ +∞

−∞

z
[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]2

dz
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 = 0, (E43)

which is used in (E42) together with (E25) to obtain

I4 = −q
ω2a

c2

∫ ∞

R
dρ

∫ +∞

−∞
z2dz

∮

C

[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]
dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2 . (E44)

Inserting the operator ∂/∂t in (E44), we obtain

∂ I4
∂t

= −q
ω2a

c2

∫ ∞

R
dρ

∫ +∞

−∞
z2dz

∮

C

∂

∂t

⎡

⎢
⎣

[
ρ cos

(
φ − ω

(
t − √

ρ2 + z2/c
))

− a
]

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦ dφ. (E45)

The partial derivative gives

∂

∂t

⎡

⎢
⎣

[
ρ cos(φ − ω

(
t − √

ρ2 + z2/c
))

− a]
[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

⎤

⎥
⎦

=
ωρ sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

+
3aωρ2 sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

−
3a2ωρ sin

(
φ − ω

(
t − √

ρ2 + z2/c
))

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

, (E46)
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which is used in (E45) to obtain

∂ I4
∂t

= −q
ω3a

c2

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]3/2

−3q
ω3a2

c2

∫ ∞

R
ρ2dρ

∫ +∞

−∞
z2dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

cos
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

+3q
ω3a3

c2

∫ ∞

R
ρdρ

∫ +∞

−∞
z2dz

∮

C

sin
(
φ − ω

(
t − √

ρ2 + z2/c
))

dφ

[
ρ2 + z2 + a2 − 2ρa cos

(
φ − ω

(
t − √

ρ2 + z2/c
))]5/2

. (E47)

The three azimuthal integrals in the right-hand side of (E47) vanish on account of (E20)–(E22), and therefore we obtain

∂ I4
∂t

= 0. (E48)

(v) Proof of I5 = 0 Using (E9) and I5 in (E5), we obtain

I5 = qωa
∫ ∞

R
δ(ρ − a)dρ

∫ +∞

−∞
δ(z)dz

∮

C
sin(φ − ωt)δ(φ − ωt)dφ. (E49)

The first two integrals give
∫ ∞

R
δ(ρ − a)dρ = Θ(a − R) = 1 (a > R),

∫ +∞

−∞
δ(z)dz = 1, (E50)

which are used in (E49) to obtain

I5 = qωa
∮

C
sin(φ − ωt)δ(φ − ωt)dφ. (E51)

Using Mathematica, the azimuthal integral gives
∫ 2πn

0
sin(φ − ωt)δ(φ − ωt)dφ = 0. (E52)

Using (E52) in (E51), we obtain

I5 = 0. (E53)

(vi) Proof of I6 = 0. From (E10), we have (Je)z = 0 which is used in I6 in (E5) to obtain

I6 = 0. (E54)

(vii–xii) Proofs of ∂ I7/∂t = 0, ∂ I8/∂t = 0, ∂ I9/∂t = 0, ∂ I10/∂t = 0, I11 = 0, and I12 = 0 The integrals I7 − I12 are of the same
form as those in I1 − I6. In fact by making the dual changes q → −g and g → −q in the integrals I1 − I6, we obtain the
integrals I7 − I12. Therefore,

∂ I7
∂t

= 0,
∂ I8
∂t

= 0,
∂ I9
∂t

= 0,
∂ I10

∂t
= 0, I11 = 0, I12 = 0. (E55)

Using (E23), (E34), (E41), (E48), and (E53)–(E54) in (E3), we finally obtain

LR = 0. (E56)

Since this relation is valid for a dyon with charges q �= 0 and g �= 0 and for a dual solenoid with fluxes Φe �= 0 and Φm �= 0, it is
valid for the particular case in which the dyon has the charges q = 0 and g �= 0 (a magnetic monopole) and the dual solenoid has
the fluxes Φm = 0 and Φe �= 0 (an electric solenoid):

LR(q = 0, Φm = 0) = 0, (E57)

which corresponds to the monopole–solenoid configuration (see (20)).
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