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Abstract Classical electrodynamics is a local theory describing local interactions between
charges and electromagnetic fields and therefore one would not expect that this theory could
predict nonlocal effects. But this perception implicitly assumes that the electromagnetic
configurations lie in simply connected regions. In this paper, we consider an electromagnetic
configuration lying in a non-simply connected region, which consists of a charged particle
encircling an infinitely long solenoid enclosing a uniform magnetic flux, and show that the
electromagnetic angular momentum of this configuration describes a nonlocal interaction
between the encircling charge outside the solenoid and the magnetic flux confined inside the
solenoid. We argue that the nonlocality of this interaction is of topological nature by showing
that the electromagnetic angular momentum of the configuration is proportional to a winding
number. The magnitude of this electromagnetic angular momentum may be interpreted as
the classical counterpart of the Aharonov–Bohm phase.

1 Introduction

Three years after the publication of the seminal paper by Aharonov and Bohm [1] on the
prediction of the effect that now bears their name, the Aharonov–Bohm (AB) effect, Tassie and
Peshkin [2] claimed that “... the quantum mechanical effects of the inaccessible field can be
understood, both mathematically and physically, through angular momentum considerations
...” They argued that in regions where electrons encircling inaccessible magnetic fields,
classical physics predicts that, in addition to the mechanical angular momentum: Lm =
(r×mv)z , there is an electromagnetic angular momentum along the z-axis whose magnitude
is given by

Lz = eΦ

2πc
, (1)

where e is the electron charge and Φ is the inaccessible magnetic flux. The interesting point
is that in these same free-field regions, quantum mechanics predicted the existence of the AB
phase δ = eΦ/(h̄c). However, the comments of Tassie and Peshkin received little attention
and the idea that (1) could shed light on the interpretation of the AB effect did not seem
to have been explored further until in recent years in which Tiwari [3] and Wakamatsu et
al. [4] derived (1) and drew attention to the role that plays (1) in the context of the AB
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effect. In this paper, we examine in detail the configuration formed by a charged particle
encircling an infinitely long solenoid enclosing a uniform magnetic flux and show that this
particle moves in a non-simply connected region where there is no magnetic field but there is
a nonzero vector potential. We then show that (1) is the electromagnetic angular momentum
of this configuration. In contrast to Tiwari [3] and Wakamatsu et al. [4], who discuss (1) in
connection to the AB effect, we only consider this connection when we suggest that (1) may
be interpreted as the classical counterpart of the AB phase. Our main purpose here is to argue
that (1) describes a nonlocal interaction between the charge moving outside the solenoid and
the magnetic flux inside this solenoid, which answers in the affirmative the question posed
in the title of this paper. Throughout our study we emphasise the topological and nonlocal
features of (1).

2 Charge-solenoid configuration

Consider the charge-solenoid configuration, which consists of a particle having the charge q
and mass m and continuously moving around an infinitely long solenoid of radius R which
encloses a uniform magnetic flux Φ. The z-axis is chosen as the axis of the solenoid (See
Fig. 1). We use Gaussian units and cylindrical coordinates (ρ, θ, φ) with their corresponding
unit vectors (ρ̂,θ̂ ,φ̂). The electric current density of the infinitely long solenoid is given by

J = cΦδ(ρ − R)

4π2R2 φ̂, (2)

where δ(ρ − R) is the Dirac delta function and Φ = πR2B is the magnetic flux through the
solenoid with B being the magnitude of the uniform magnetic field inside the solenoid. The
electric current density J is a steady current: ∇ · J = 0 and its magnetic field satisfies the
magnetostatic equations

∇ · B = 0, ∇ × B = Φδ(ρ − R)

πR2 φ̂, (3)

whose solution gives the explicit form of this magnetic field

B = ΦΘ(R − ρ)

πR2 ẑ, (4)

which is confined in the solenoid. Here Θ(ρ − R) is the Heaviside step function having the
values Θ = 1 if R > ρ and Θ = 0 if R < ρ. To verify that (4) satisfies (3) we write
B = Bz(ρ)ẑ, where Bz(ρ) = ΦΘ(R −ρ)/(πR2). Thus, ∇ · B = ∂Bz/∂z = 0 and ∇ × B =
−(∂Bz/∂ρ)φ̂ = Φδ(ρ − R)φ̂/(πR2), where we have used ∂Θ(R − ρ)/∂ρ = −δ(ρ − R).
From (4) it follows that Bout = 0 and Bin = Φ ẑ/(πR2), where Bout(ρ > R) and Bin(ρ < R)

denote the values of the magnetic field outside and inside the solenoid. The magnetic field
vanishes outside the solenoid and has a constant value inside it. From the first equation in
(3) we infer B = ∇ × A where A is the corresponding vector potential. Using this relation
in the second equation in (3), considering ∇2F = ∇(∇ · F) − ∇ × (∇ × F) and adopting the
Coulomb gauge ∇ · A = 0, we obtain the Poisson equation

∇2A = −Φδ(ρ − R)

πR2 φ̂. (5)

In Appendix A we verify that the solution of this equation reads [5]:

A = Φ

2π

(
Θ(ρ − R)

ρ
+ ρ Θ(R − ρ)

R2

)
φ̂. (6)
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Fig. 1 Charge-solenoid configuration. An electric charge moving in the x-y plane along the path C which
encircles an infinitely long solenoid enclosing a uniform magnetic flux

This potential is not defined at ρ = R, i.e. at the surface of the solenoid. However, an appropri-
ate regularisation yields A(R) = Φφ̂/(2πR) which indicates that A is continuous at ρ = R.

We can directly verify that (6) satisfies the Coulomb gauge: ∇ · A = (1/ρ)(∂Aφ/∂φ) = 0.

In Appendix B we verify that the curl of (6) yields the magnetic field given in (4).
Now, from (6) it follows that

Aout = Φ

2πρ
φ̂, Ain = ρ Φ

2πR2 φ̂, (7)

where Aout(ρ > R) and Ain(ρ < R) denote the values of the vector potential outside
and inside the solenoid. These potentials are associated with the magnetic fields Bout =
∇ × Aout = 0 and Bin = ∇ × Ain = Φ ẑ/(πR2). The first of these equations imply
that Aout is a pure gauge potential: Aout = ∇χ, where the function χ = χ(φ) is defined as
χ = Φφ/(2π). This is a multi-valued function χ(φ) �= χ(φ+2π) and satisfies ∇2χ = 0. On
the other hand, the circulation of the potential A along an arbitrary closed path C is invariant
under the gauge transformation A′ = A + ∇� where � is a suitable gauge function. This
gauge transformation must be a restricted gauge transformation because the potential A is
already in the Coulomb gauge. Therefore, the function � satisfies ∇2� = 0. We also require
that the function � be single-valued. Under these considerations, the gauge invariance of the
circulation of the vector potential A follows∮

C
A′ · dx =

∮
C

A · dx +
∮
C

∇� · dx =
∮
C

A · dx. (8)

Here we have used the Stokes theorem
∮
C ∇� ·dx = ∫

S ∇ ×∇� ·dS, where S is the surface
enclosed by the path C , and the identity ∇ × ∇� = 0 to conclude

∮
C ∇� · dx = 0. If we

choose a path C along a region inside the solenoid ρ < R, then A′ = A′
in and from (8) it

follows
∮
C A′

in · dx = ∮
C Ain · dx. On the other hand, if the path C lies in a region outside

the solenoid ρ > R then A′ = A′
out and (8) yields

∮
C A′

out · dx = ∮
C Aout · dx. We should

stress that the result in (8) holds as long as the gauge function � is singled-valued. If this is
not true then we cannot assume the validity of (8) because the vanishing of the circulation∮
C ∇� · dx cannot generally be assumed (see Sect. 3).

The region outside the solenoid is shown to be an electromagnetic force-free region. To see
this let us consider the Lorentz force F = q ẋ×B(x)/c, where ẋ = dx/dt is the velocity of the
charged particle and x its position. Inserting the magnetic field (4) and ẋ = ρ̇ρ̂ + ρφ̇φ̂ + żẑ,
we obtain the Lorentz force in the form
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F = qΦΘ(R − ρ)

πR2 (ρφ̇ρ̂ − ρ̇φ̂), (9)

which is local in the sense that the magnetic field must be evaluated at the point where
the particle is located. It follows that if the particle is located inside the solenoid ρ < R
then Θ = 1 and we obtain F = qΦ(ρφ̇ρ̂ − ρ̇φ̂)/(πR2). However, in the charge-solenoid
configuration the moving charged particle is assumed to be outside the solenoid ρ > R so
that Θ = 0 and therefore F = 0. In short: the Lorentz force vanishes because the magnetic
field is zero in the region where the charge is moving.

3 Topology and nonlocality of the circulation of the vector potential outside the
solenoid

The Cauchy’s integral formula [6] for an analytic function f (z) reads,

1

2π i

∮
C

f (z) dz

z−z0
=

{
n(C, z0) f (z0) if C encloses z0

0 otherwise
(10)

where n(C, z0) represents the winding number of the curve C around the singularity z0. The
winding number gives the number of times the curve C encircles (counterclockwise) around
a singularity. Consider now the particular case in which there is a singularity at ρ = 0, which
in the complex plane corresponds to z0 = ρ eiφ = 0. We choose f (z) = K , where K is a
constant and thus (10) yields

K

2π i

∮
C

dz

z
=

{
nK if C encloses z0 = 0
0 otherwise

(11)

If we write z = ρ eiφ and dz = eiφ(dρ + iρdφ) then it follows that dz/z = (1/ρ)dρ +
idφ. Therefore, the left-hand side of (11) gives rise to two terms. The first term reads
(K/2π i)

∮
C dρ/ρ but dρ/ρ = (ρ̂/ρ) · dx = ∇ ln (ρ) · dx, where dx = dρρ̂ + ρdφφ̂ + dzẑ

is the line element, implying
∮
C ∇ ln (ρ) · dx = 0 because ln (ρ) is a single-valued func-

tion and consequently this first term vanishes. The second term is non-vanishing and reads
(K/2π)

∮
C dφ. Since dφ = φ̂/ρ · dx then (11) takes the particular form

∮
C

(
K φ̂

2πρ

)
· dx =

{
nK if C encloses ρ = 0
0 otherwise

(12)

This is a purely formal result arising from the Cauchy’s integral formula given in (10). Let
us now apply (12) to an idealised infinitely long solenoid enclosing a uniform magnetic
flux Φ. We make the identification K = Φ in (12) and obtain the relation K φ̂/(2πρ) =
Φφ̂/(2πρ) = Aout(x). Since the solenoid encloses the singularity at ρ = 0 then it follows∮

C
Aout ·dx =

{
nΦ if C encloses the solenoid
0 otherwise

(13)

Here n denotes the winding number of the curve C around the solenoid. Equation (13) states
that if the curve C encircles n times the solenoid then the circulation of the potential Aout

accumulates n times the magnetic flux Φ. The circulation of the vector potential in (13) is
constant since nΦ is a constant quantity and therefore this circulation is insensitive to the
form of the curve C and also to the dynamics that we can associate to this curve. If for
example we consider C1,C2...Ck different curves which enclose counterclockwise n times
the solenoid then (13) implies the equalities

123



Eur. Phys. J. Plus         (2021) 136:847 Page 5 of 19   847 

Fig. 2 a The circulation of the potential Aout in a closed path around the solenoid is insensitive to the form
of the path, i.e. for different paths C1,C2...Ck with the same winding number we have

∮
C1

Aout(x) · dx =∮
C2

Aout(x) ·dx = ... = ∮
Ck

Aout(x) · dx. b The circulation
∮
C>∂S Aout · dx is taken along a path C greater

than the boundary ∂S of the surface S of the solenoid. Since
∮
C>∂S Aout · dx = ∫

S Bin · dS holds then the
circulation is spatially delocalised from the surface of the solenoid where the flux of the magnetic field is
localised

∮
C1

Aout · dx =
∮
C2

Aout ·dx = ... =
∮
Ck

Aout · dx. (14)

The curves C1,C2...Ck are homotopically equivalent (one curve can be continuously
deformed into the other) and therefore we could not distinguish if the flux Φ in (13) is
connected with the circulation of Aout along C1 or along C2 or along Ck (see Fig. 2a). This
indistinguishability is a manifestation of the topology of the infinitely long solenoid which
lies in a non-simply connected region.

Let us discuss the nonlocal feature of the circulation of the potential Aout. At first sight,
we could naively transform the closed line integral that defines this circulation into a surface
integral via the Stokes theorem:

∮
C=∂S Aout ·dx = ∫

S ∇ ×Aout ·dS, where the closed path
C now represents the boundary ∂S of some suitable surface S . However, this application of
the Stokes theorem leads to an inconsistent result because the potential Aout is the gradient
of a function and therefore ∇ × Aout = 0, which implies the vanishing of the circulation of
Aout, a result that contradicts (13) because it is assumed that the pathC encloses the solenoid.
However, we can consistently use the Stokes theorem but we need to be careful in applying
it by taking into account that the path C encloses ρ = 0 and thus the considered region is
non-simply connected and therefore

∮
C A · dx �= 0.

Consider the vector potential A in (6) which is defined in all space. Let us apply the
Stokes theorem to this potential:

∮
C=∂S A · dx = ∫

S ∇ × A · dS. If the path C encloses the
solenoid then along this path the potential in (6) reads A = Aout and the Stokes theorem gives:∮
C=∂S Aout · dx = ∫

S ∇ × A · dS. In this case the surface S enclosed by the path C can be
written asS = S0+S, where S0 is the surface extending outside the solenoid to the boundary
∂S and S is the surface accounting for the cross section of the solenoid and having the
boundary ∂S (see Fig. 2b). We observe that the boundary of the surface of the solenoid satisfies
C=∂S >∂S because the path C is outside the solenoid (C > ∂S indicates that the length of
the curve C is greater than the length of the boundary ∂S of the solenoid). Along the surface
S0 the potential in (6) reads A = Aout and along the solenoid surface S it becomes A = Ain.

Thus, the Stokes theorem gives:
∮
C=∂S Aout · dx = ∫

S0
∇ × Aout · dS + ∫

S ∇ × Ain · dS.

The first term on the right vanishes because ∇ × Aout = 0 and thus the Stokes theorem takes
the form
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∮
C>∂S

Aout · dx =
∫
S
∇ × Ain · dS, (15)

which admits a nonlocal interpretation. While the left-hand side of (15) is defined outside the
solenoid, its right-hand side is defined inside the solenoid. Put differently, the sides of (15)
are defined in different spatial regions which implies a nonlocal connection between them.
We can see that this nonlocality is a consequence of having applied the Stokes theorem in a
non-simply connected region (we observe that

∮
C Aout ·dx = ∮

C ∇χ ·dx �= 0) and ultimately
is a consequence of the topology of the idealised solenoid. The genesis of this topology lies
in the fact that in the assumption of an infinitely long solenoid there is a non-removable
singularity along the z-axis. Since ∇ × Ain = Bin, with Bin denoting the constant magnetic
field inside the solenoid, then (15) becomes

∮
C>∂S

Aout · dx =
∫
S

Bin · dS, (16)

which expresses a nonlocal relation between the magnetic flux confined in the solenoid and
the circulation of the vector potential along a curve outside the solenoid. Equations (14) and
(16) imply

∮
Ck>∂S

Aout · dx = ... =
∮
C2>∂S

Aout · dx =
∮
C1>∂S

Aout · dx =
∫
S

Bin · dS, (17)

Now, if we consider the equalities of the left-hand side of the magnetic flux in Eq. (17) then
there is a manifest ambiguity because we cannot distinguish if this flux is connected with
the circulation of Aout along C1 > ∂S or along C2 > ∂S or along Ck > ∂S. This means
that the circulations in (17) are spatially delocalised with respect to the magnetic flux, an
expected result since they are not functions of point. Put in other words: the potential Aout is
ambiguous due to its gauge-dependence and its circulation

∮
C Aout ·dx is ambiguous due to its

spatial delocalisation (indistinguishability of the curveC). We should also note the difference
between applying the Stokes theorem in a simply connected region and in the non-simply
connected region considered here. In the former application of the theorem there is a single
curve C = ∂S representing the boundary ∂S of the surface S. In the latter application of
the theorem there can be k curves Ck > ∂S all of them greater than the boundary ∂S of the
surface S.

We can now draw the lessons we have learned about the infinitely long solenoid. The
current of this solenoid (2) yields the vector potential A in (6) whose part outside the solenoid
is Aout and the magnetic field B in (4) whose part inside the solenoid is Bin. This infinitely
long solenoid involves a line of singularity (along the z-axis) and then one can apply the
Cauchy’s integral formula (10) and the Stokes theorem (16) to this non-simply connected
region. Both mathematical tools lead to (17), which unambiguously shows the nonlocality of
the circulation of Aout with respect to the flux of the magnetic field Bin. Physics deals with the
infinitely long solenoid and topology with the line of singularity and the homotopic curves
around this line. One then can say that the idea of an infinitely long solenoid is the genesis
of the nonlocality of the circulation of Aout, or alternatively, that the idea of an infinite line
of singularity is the genesis of this nonlocality. In more elegantly words: topology dictates
nonlocality! However, an infinitely long solenoid and a line of singularity are abstract ideas
and therefore the moral of this story is that it all started by making idealisations.
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4 Electromagnetic angular momentum

Using the Poynting formula LP = [1/(4πc)] ∫V x × (E × B) d3x for an electromagnetic
angular momentum in a volume V , we come directly to the conclusion that the electromag-
netic angular momentum of the charge-solenoid configuration vanishes outside the solenoid
because the magnetic field is zero in this region. However, Wakamatsu et al. [4] recently
used the Maxwell formula [7]: LM = (1/c)

∫
V � x × A d3x for an electromagnetic angular

momentum and arrived at the conclusion that the electromagnetic angular momentum of
the charge-solenoid configuration is given by L = qΦ ẑ/(2πc) outside the solenoid. This
same result was previously obtained by Tiwari [3] using a Lagrangian treatment. Why do
the Poynting and Maxwell formulas predict different results for the same configuration? To
answer this question, let us formulate the following theorem:
Decomposition Theorem. Let E(x, t) be a time-dependent electric field and �(x, t) = ∇ ·
E/(4π) its associated charge density. Let B(x) be a time-independent magnetic field and
A(x) its associated vector potential. The fields E and B are independent fields, i.e. they
are produced by different sources. The Poynting formula for the electromagnetic angular
momentum in the volume V originated by the interaction between the fields E and B is given
by

LP = 1

4πc

∫
V

x × (E × B) d3x, (18)

and can be decomposed as

LP = LM + LR + LG + LS, (19)

where

LM = 1

c

∫
V

� x × A d3x, (20)

LR = 1

4πc

∫
V

x × [
(∇ × E) × A

]
d3x, (21)

LG = 1

4πc

∫
V

x × (E∇ · A) d3x, (22)

LS = 1

4πc

∮
S

x × [
n̂(E · A) − A(n̂ · E) − E(n̂ · A)

]
dS. (23)

Here S is the surface of the volume V . The proof of this theorem is given in two parts. In
Appendix C we show that the validity of (18) follows from the Poynting vector associated
with the interacting fields E and B, and in Appendix D we show that (19) follows from a
tensor identity.

The term LR in (21) contains the factor ∇ ×E which is connected with (−1/c)∂B/∂t due
to the Faraday’s induction law and therefore it deals with possible radiative effects. The term
LG in (22) involving ∇ · A deals with the adopted gauge for the potential A. The term LS in
(23) is a surface term. Notice that LP may be zero without LM necessarily be zero, which
explains why the Poynting and Maxwell formulas can predict different results as it happens
when considering the charge-solenoid configuration.

Let us now apply (19) to this charge-solenoid configuration where the volume V covers
all space except the volume of the solenoid. Here we have LP = 0 because B = 0 outside
the solenoid and therefore (19) yields 0 = LM + LR + LG + LS. In Appendix E we show
that LR = 0. We have also LG = 0 because ∇ · Aout = 0. The surviving pieces satisfy
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0 = LM + LS indicating that there exists LM in the volumetric space where the charge is
moving around the solenoid and there exists LS on the surface of this volumetric space which
lies at infinity. It follows that LS = −LM and this provides an interpretation for LS. We will
see that LM is related to the flux of the magnetic field of the solenoid and therefore LS may
be interpreted as an electromagnetic angular momentum originated by the return flux of the
magnetic field of an infinitely long solenoid, an interpretation consistent with the fact that
the signs of LM and LS are reversed. When considering the relation LM = −LS we should
always have in mind that LM and LS are defined in different spatial regions.

We also note that a different and less general two-dimensional decomposition of the
Poynting formula LP was introduced by Wakamatsu et al. [4] (this decomposition contains
a sign mistake), which involves a two-dimensional Coulomb field produced by the moving
electron whose velocity is assumed to be “much slower than the speed of light,” a condi-
tion that, according to the authors, allows them to discard the magnetic field of the moving
electron. They obtained the relation LM = −LS and interpreted the piece −LS as an elec-
tromagnetic angular momentum originated by the return flux. However, their analysis is
unsatisfactory because the electron-solenoid configuration is three-dimensional, and more
importantly, because they completely ignored the radiative effects of the moving electron.
Even for slowly moving electrons with v << c there are radiation fields as we will show it
in Appendix E, where we will explicitly demonstrate the non-trivial result that the electro-
magnetic angular momentum of the charge-solenoid configuration is insensitive to radiative
effects.

We now apply (20) to obtain the electromagnetic angular momentum of the charge-
solenoid configuration covering all space except the surface S which lies at infinity.
We assume that the charge q is localised in the x-y plane so that its position vector
is xq(t) = {ρq(t) cos φq(t), ρq(t) sin φq(t), 0} = ρq(t)ρ̂ and �(x′, t) = (q/ρ′)δ{ρ′ −
ρq(t)}δ{φ′ − φq(t)}δ{z′} is its associated charge density. The vector potential is given by
Aout(x′) = Φφ̂/(2πρ′). A generic point reads x′ = ρ′ρ̂+z′ẑ. Using these ingredients and
integrating the right-hand side of (20), we obtain

1

c

∫
V

�(x′, t) x′ × Aout(x′) d3x ′ = nqΦ

2πc
ẑ, (24)

where n is the winding number identifying the number of times the electric charge trav-
els its closed path around the solenoid. In getting (24) we have used

∫ ∞
−∞ δ(z′)dz′ =

1,
∫ ∞
−∞ z′δ(z′)dz′ = 0,

∫ ∞

R
δ{ρ′ − ρq(t)} dρ′ = Θ{ρq(t) − R} = 1, (25)

(because ρq(t) > R outside the solenoid) and the relation
∮
C

δ{φ′ − φq(t)} dφ′ = n, (26)

which is demonstrated in Appendix F. Therefore, (24) represents the accumulated electro-
magnetic angular momentum of the charge-solenoid configuration

L = nqΦ

2πc
ẑ. (27)

Expressed differently, every time the charge goes around the solenoid, the charge-solenoid
configuration acquires the electromagnetic angular momentum L(n=1) = qΦ ẑ/(2πc) and
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therefore after n times this configuration accumulates the electromagnetic angular momen-
tum given by (27), which can compactly be written as L = nL(n=1) (this equation does
not represent a quantisation rule because L(n=1) does not generally describe a quantum of
electromagnetic angular momentum).

Some additional comments on (27) are in order. The fact that this equation does not
involve the coordinates of the encircling electric charge means that L is independent from
the dynamics of this charge and therefore from its emitted radiation. This conclusion follows
from the use of relations (25) and (26) in the computation of (24). It is clear that the use
of these integrals embodies a loss of information of the dynamical coordinates ρq(t) and
φq(t) of the encircling charge. Notice also that the corresponding electromagnetic angular
momentum LS lying on the infinite surface and associated with the return flux, is given by
LS = −nqΦ ẑ/(2πc) and therefore we have the relation LM + LS = 0 as predicted by the
Poynting formula outside the solenoid. Here we justify the validity of this last relation by
showing that LP = LM + LR + LG + LS with LP = 0, LR = 0 and LG = 0. On the other
hand, when considering the Maxwell formula for the electromagnetic angular momentum
applied to the charge-solenoid configuration

L = 1

c

∫
V

� x × Aout d
3x, (28)

the question about its gauge invariance immediately arises. It is clear that this invariance
requires

∫
V � x × ∇� d3x = 0 where � is a suitable gauge function. This condition is valid

for the charge-solenoid configuration. Let us express (28) in a form that makes evident its
gauge invariance. We have seen that the relation

∮
C Aout · dx = nΦ given in (13) holds for

the potential outside the infinite solenoid where n is the winding number of the path C . This
relation and (27) yield the novel form

L = q ẑ
2πc

∮
C

Aout · dx, (29)

which is gauge invariant on account of the gauge invariance of the circulation of the potential
Aout. According to (29) the accumulated electromagnetic angular momentum depends on
the circulation of the potential outside the solenoid. Using (16) we can see that (29) can be
expressed as

L = q ẑ
2πc

∫
S

Bin · dS, (30)

which states that the accumulated electromagnetic angular momentum calculated in a volume
V outside the solenoid depends on the flux of the magnetic field inside the solenoid. At
first glance, (29) and (30) suggest different interpretations of the physical origin of the
electromagnetic angular momentum L. Let us combine (29) and (30) to obtain the relation

q ẑ
2πc

∮
C

Aout · dx = L = q ẑ
2πc

∫
S

Bin · dS. (31)

The first interpretation, which we will call the A-explanation, is supported by the first equality
in (31), according to which the vector potential locally acts through its circulation on the
charged particle originating the electromagnetic angular momentum L. Argued differently,
classical electrodynamics predicts the existence of an effect in the region outside the solenoid,
the electromagnetic angular momentum L, which is physically originated by the local action
of an electromagnetic quantity on the charged particle. Now the only electromagnetic quantity
function of point defined in that region is the potential Aout and therefore this potential should
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produce L. In short: Aout exists in each point of the trajectory of q and therefore Aout locally
acts on q producing L. The second interpretation, which we will call the B-explanation, is
supported by the second equality in (31), according to which the magnetic field nonlocally acts
through its flux on the charged particle originating the electromagnetic angular momentum
L. In short: Bin exists inside the solenoid and not in each point of the trajectory of q outside
the solenoid and therefore Bin nonlocally acts on q producing L. We admit the B-explanation
and reject the A-explanation for the following arguments:
(a) The potential Aout is gauge-dependent.
(b) The Stokes theorem applied in a non-simply connected region implies the relation (see
(17))

q ẑ
2πc

∮
Ck>∂S

Aout · dx = ... = q ẑ
2πc

∮
C2>∂S

Aout · dx = q ẑ
2πc

∮
C1>∂S

Aout · dx = L = q ẑ
2πc

∫
S

Bin · dS,

(32)

where the different charge paths C1 > ∂S,C2 > ∂S, ...,Ck > ∂S possessing all of them the
same winding number are homotopically equivalent. Now, if we consider the equalities of the
left-hand side of L in (32) then there is a manifest ambiguity because we cannot distinguish
if L is connected with the circulation of Aout along C1 > ∂S or along C2 > ∂S or along
Ck > ∂S. We cannot know which of the circulations of the potential Aout displayed in (32) is
causally connected with L because these circulations are spatially delocalised with respect
to the solenoid (they are not functions of point). As pointed in Sect. 3, the potential Aout is
ambiguous due to its gauge-dependence and its circulation

∮
C Aout ·dx is ambiguous due to its

spatial delocalisation (indistinguishability of the curve C). Accordingly, the A-explanation
does not hold. But if we consider the last equality in (32) then we conclude that L outside
the solenoid is unambiguously connected with the flux of the magnetic field confined inside
the solenoid. Since the charge and the magnetic flux lie in different spatial regions then they
nonlocally interact to produce L. Stated differently, (32) tell us that the magnetic flux does
not locally affect the trajectory of the charge. We can now answer the question posed in the
title of this paper: Can classical electrodynamics predict non-local effects? Answer: yes, the
electromagnetic relation given in (27) describes a nonlocal interaction between the magnetic
flux confined inside the solenoid and the electric charge moving outside the solenoid. This
electromagnetic configuration lies in a non-simply connected region. However, this kind of
configurations is not usually considered in the practice. The electromagnetic configurations
we typically consider lie in simply connected regions for which classical electrodynam-
ics predicts local effects. Put differently, for the prediction of the electromagnetic angular
momentum of the charge-solenoid configuration, it is crucial that the cylindrical solenoid
be infinitely long, which guarantees that the magnetic field is confined in this solenoid, that
the associated vector potential outside the solenoid is a pure gauge potential and that this
configuration lies in a non-simply connected region where curves encircling the infinitely
long solenoid cannot be shrunk (i.e. continuously deformed) into a point without overstep-
ping this solenoid (see Fig. 3a where we have drawn curves in space not in the plane with
the purpose of making the argument clearer). If the cylindrical solenoid were long but finite
then the magnetic field is no longer confined in the solenoid, the associated vector potential
outside the solenoid is not a pure gauge potential, and this configuration lies in a simply
connected region where curves encircling this solenoid can be shrunk into a point bypassing
this solenoid (see Fig. 3b).
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(a) (b)

Fig. 3 a exhibits an idealised infinitely long solenoid defined in a non-simply connected region and b exhibits
a real finite solenoid defined in a simply connected region

5 The classical counterpart of the AB phase

We have argued that classical electrodynamics and the topology of the charge-solenoid con-
figuration conspire to produce the accumulated electromagnetic angular momentum of mag-
nitude

L = q

2πc

∮
C>∂S

Aout · dx = q

2πc

∫
S

Bin · dS = nqΦ

2πc
, (33)

In a similar fashion, quantum mechanics and the topology of the charge-solenoid configura-
tion also conspire to produce the accumulated quantum AB phase

δ = q

h̄c

∮
C>∂S

Aout · dx = q

h̄c

∫
S

Bin · dS = nqΦ

h̄c
. (34)

Both quantities L and δ satisfy the little-known linear relation [4]:

δ = 2π

h̄
L , (35)

which expresses a striking connection between classical electrodynamics represented by the
electromagnetic angular momentum L , and quantum mechanics represented by the AB phase
δ. As may be seen, both L and δ are given in terms of the circulation of Aout, which in turn
satisfies the topological feature expressed in (13) and the nonlocal feature expressed in (16).
The conclusion naturally arises: the topological and nonlocal features of the circulation of
the vector potential outside the solenoid are naturally translated to both the classical quantity
L and the quantum quantity δ and this result leads us to suggest that L may be naturally
considered the classical counterpart of δ. Regarding this suggestion, it is pertinent to note
that some authors have claimed that the AB phase has no classical counterpart (see, for
example, Refs. [8–10]). However, a number of authors have proposed classical analogues of
the AB effect (see, for example, Refs. [11–20]).

6 Conclusion

In this paper, we have shown that classical electrodynamics can predict nonlocal effects even
though this theory is the prototype of a local theory. This nonlocality was revealed when
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we considered the configuration formed by a charged particle continuously encircling an
infinitely long solenoid enclosing a uniform magnetic flux. The charged particle moves in
a non-simply connected region where there is no magnetic field and therefore there is no
Lorentz force acting on the charge but there is a nonzero vector potential. We then derived
the electromagnetic angular momentum of this configuration L = [q ẑ/(2πc)] ∮C>∂S Aout ·
dx = [q ẑ/(2πc)] ∫S Bin · dS = nqΦ/(2πc), which is topological because it depends on
the winding number n representing the number of times the charge carries out around the
solenoid and is nonlocal because the magnetic field of the solenoid acts on the charged particle
in regions for which this field does not exist. We excluded the idea that this electromagnetic
angular momentum was physically produced by the vector potential because this potential is
ambiguous due to its gauge-dependence and because the circulation of this potential is also
ambiguous due to its spatial delocalisation. We have noted that the genesis of the topology
and nonlocality of the obtained electromagnetic angular momentum is the idealised infinitely
long solenoid involving an infinite line of singularity, which allowed us to apply the Cauchy’s
integral formula and the Stokes theorem in a non-simply connected region. Finally, we
have argued that the magnitude of the derived electromagnetic angular momentum may
be interpreted as the classical counterpart of the AB phase.
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Appendix A. Proof that (6) satisfies (5)

The Laplacian of an arbitrary vector of the form F = Fφ(ρ)φ̂ is given by ∇2F = (∇2Aφ −
Aφ/ρ2)φ̂ in cylindrical coordinates. Equation (6) is of the form A = Aφ(ρ)φ̂ with Aφ(ρ)

given by

Aφ(ρ) = Φ

2π

(
Θ(ρ − R)

ρ
+ ρ Θ(R − ρ)

R2

)
. (A1)

The Laplacian of Aφ(ρ) reads

∇2Aφ = 1

ρ

∂

∂ρ

(
ρ

∂Aφ

∂ρ

)
. (A2)

Therefore,

ρ
∂Aφ

∂ρ
= ρ Φ

2π

[
∂

∂ρ

(
Θ(ρ − R)

ρ

)
+ 1

R2

∂

∂ρ

(
ρ Θ(R − ρ)

)]

= ρ Φ

2π

[(
δ(ρ − R)

ρ
− Θ(ρ − R)

ρ2

)
+

(
Θ(R − ρ)

R2 − ρ δ(R − ρ)

R2

)]
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= Φ

2π

[(
ρ Θ(R − ρ)

R2 − Θ(ρ − R)

ρ

)
+ 1

R2

(
(R2 − ρ2)δ(R − ρ)

)]

= Φ

2π

[
ρ Θ(R − ρ)

R2 − Θ(ρ − R)

ρ

]
, (A3)

where it is evident that (R2 − ρ2)δ(R − ρ) = 0 for R > ρ and R < ρ. It follows

∇2Aφ = Φ

2πρ

[
∂

∂ρ

(
ρ Θ(R − ρ)

R2 − Θ(ρ − R)

ρ

)]

= Φ

2πρ

[(
Θ(ρ − R)

ρ2 + Θ(R − ρ)

R2 − ρ δ(R − ρ)

R2 − δ(ρ − R)

ρ

)]

= 1

ρ2

[
Φ

2π

(
Θ(ρ−R)

ρ
+ ρΘ(R−ρ)

R2

)]
− Φ

2π

[
δ(R−ρ)

R2 + δ(R−ρ)

ρ2

]

= Aφ

ρ2 − Φ

2π

[
δ(R−ρ)

R2 + δ(R−ρ)

ρ2

]
. (A4)

Now, we can write

δ(R − ρ)

R2 + δ(R − ρ)

ρ2 = 2δ(ρ − R)

R2 + 1

R2ρ2

(
(R2 − ρ2)δ(R − ρ)

)
= 2δ(ρ − R)

R2 ,

(A5)

where we have considered the result (R2 − ρ2)δ(R − ρ) = 0. Therefore,

∇2Aφ = Aφ

ρ2 − Φδ(ρ − R)

πR2 , (A6)

which implies the Poisson equation given in (5),

∇2A =
(

∇2Aφ − Aφ

ρ2

)
φ̂ = −Φδ(ρ − R)

πR2 φ̂, (A7)

Appendix B. Proof that the curl of (6) gives (4)

The curl of an arbitrary vector of the form F = Fφ(ρ)φ̂ is given by ∇ × F =
(1/ρ)(∂(ρFφ)/∂ρ)ẑ in cylindrical coordinates. It follows that

∇ ×
(

Φ

2πρ
Θ(ρ − R)φ̂

)
= Φ

2πρ
δ(ρ − R)ẑ

∇ ×
(

Φρ

2πR2 Θ(R − ρ)φ̂

)
= Φ

πR2 Θ(R − ρ)ẑ − Φρ

2πR2 δ(R − ρ)ẑ. (B1)

Therefore, the curl of (6) is

B = ∇ ×
(

Φ

2πρ
Θ(ρ − R)φ̂ + Φρ

2πR2 Θ(R − ρ)φ̂

)

= Φ

πR2 Θ(R − ρ)ẑ + Φ

2π

(
R2 − ρ2

ρR

)
δ(R − ρ)ẑ. (B2)

A non-vanishing value of B occurs when R > ρ is assumed in the first term but then the last
term identically vanishes. Therefore, the validity of (4) is demonstrated.
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Appendix C. Poynting theorem of combined electromagnetic equations and the proof
of (18)

Consider two independent systems of electromagnetic equations. The first system describes
the time-dependent electric and magnetic fieldsE(x, t) andB(x, t) produced by an arbitrarily
moving charge q having the velocity ẋq(t) = dxq(t)/dt and position xq(t). The correspond-
ing charge and current densities of the moving charge are given by �(x, t) = qδ{x − xq(t)}
and J (x, t) = q ẋq(t)δ{x − xq(t)} which satisfy the continuity equation ∇ ·J + ∂�/∂t = 0
and the Maxwell equations

∇ · E = 4π�, ∇ × E + 1

c

∂B
∂t

= 0, ∇ · B = 0, ∇ × B − 1

c

∂E
∂t

= 4π

c
J . (C1)

The charged particle interacts with external electric and magnetic fields E(x, t) and B(x, t)
produced in turn by their own set of charge and current densities ρ(x, t) and J(x, t) satisfying
the continuity equation ∇ · J + ∂ρ/∂t = 0 as well as the Maxwell equations

∇ · E = 4πρ, ∇ × E + 1

c

∂B
∂t

= 0, ∇ · B = 0, ∇ × B − 1

c

∂E
∂t

= 4π

c
J, (C2)

which constitute the second system of electromagnetic equations we are considering. We shall
now obtain the corresponding Poynting theorem of the combined system formed by (C1) and
(C2). We start by considering the work done on the charged particle which, according to the
Lorentz force, is

F · dxq = q

(
E(xq , t)+ ẋq(t)

c
× B(xq , t)

)
·ẋq(t)dt = qE(xq , t)·ẋq(t)dt. (C3)

For the charged particle we may write q = ρ(xq , t)d3x and ẋq(t)ρ(xq , t) = J (xq , t) so
that the rate at which work is done on the charge within a volume V reads∫

V
E · J d3x . (C4)

Our job now consist in casting the integrand of (C4) in the form of a local conservation law,
i.e. to find something of the form ∇ · (...) + ∂(...)/∂t, which is conserved in absence of
sources. From the Ampere–Maxwell law displayed in (C1) we obtain J = (c/4π)∇ ×B−
(1/4π)(∂E/∂t) so that

E · J = c

4π
E · (∇ × B) − 1

4π
E · ∂E

∂t
. (C5)

Using the identity ∇ · (E × B) = B · (∇ × E) − E · (∇ × B) and the Faraday law ∇ × E =
−(1/c)∂B/∂t in (C1) we obtain

E · J = − 1

4π

(
B · ∂B

∂t
+ E · ∂E

∂t

)
− c

4π
∇ · (E × B). (C6)

Since ∂(B ·B)/∂t = B · (∂B/∂t)+B · (∂B/∂t) and ∂(E ·E)/∂t = E · (∂E/∂t)+E · (∂E/∂t)
it follows

E · J = − 1

4π

∂

∂t

(
E · E + B · B

)
+ 1

4π

(
E · ∂E

∂t
+ B · ∂B

∂t

)
− c

4π
∇ · (E × B). (C7)

Let us analyse the second term of (C7). Using the Faraday law ∂B/∂t = −c∇ ×E in (C1) it
follows the relation B ·(∂B/∂t) = −cE ·(∇ ×B)−c∇ ·(E×B). Now, the Ampere–Maxwell
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law in (C2) implies ∂E/∂t = −4πJ+c∇ ×B so that E ·(∂E/∂t) = −4πE ·J+cE ·(∇ ×B).

Therefore,

1

4π

(
E · ∂E

∂t
+ B · ∂B

∂t

)
= −E · J − c

4π
∇ · (E × B), (C8)

which is used in (C7) to obtain the relation

E · J = −E · J − 1

4π

∂

∂t

(
E · E + B · B

)
− c

4π
∇ · (E × B + E × B). (C9)

Let us now define the interaction energy density as

U = 1

4π

(
E · E + B · B

)
, (C10)

and the interaction Poynting vector as

S = c

4π
(E × B + E × B). (C11)

Inserting (C9) into (C4) and using (C10) and (C11) we obtain

−
∫
V
(E · J + E · J) d3x =

∫
V

(
∂U

∂t
+ ∇ · S

)
d3x . (C12)

Since the volume V is arbitrary then the integrand of (C12) is valid for any point so that the
Poynting theorem for the energy conservation due to the interaction of a charged particle
with external electromagnetic fields reads

∇ · S + ∂U

∂t
= −E · J − E · J. (C13)

Let us now to apply this interaction Poynting theorem to the charge-solenoid configuration
where the charged particle satisfies (C1), there is the magnetostatic field B(x) produced by
the current density J(x) playing the role of external magnetic field and there is no electric
field. The magnetic field obeys the equations ∇ ·B = 0,∇×B = 4πJ/c. The first equation is
satisfied by B = ∇×A, where A(x) is the associated vector potential. For this particular case
(C13) describes the interaction of the fieldsE and B and takes the form ∇·S+∂U/∂t = −E ·J,

where the Poynting vector is S = c E × B/(4π) and the energy density is U = B · B/(4π).
The corresponding electromagnetic momentum density reads g = E × B/(4πc) and its
associated electromagnetic angular momentum density is given by l = x × (E × B)/(4πc),
whose volume integration yields the electromagnetic angular momentum given in (18).

Appendix D. Proof of (19)

A direct vector calculation leads to the identity

∂k
[
εsqi xq(δikEm Am − Ek Ai − Ei Ak)

]
= −4π� εsqi xq Ai + εsqi xqEk(∂k Ai − ∂i Ak)

+ εsqi xq A
k(∂iEk − ∂kEi ) − εsqi xqEi∂k Ak

= −4π
[
� x × A

]s + [
x × (E × B)

]s
− [

x × {(∇ × E) × A}]s − [
x × E(∇ · A)

]s
. (D1)
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Volume integration of (D1) implies the relation

1

4πc

∫
V

[x × (E × B)]s d3x = 1

c

∫
V
[� x × A]s d3x + 1

4πc

∫
V
[x × {

(∇ × E) × A
}]sd3x

+ 1

4πc

∫
V
[x × (E∇ · A)]s d3x

+ 1

4πc

∮
S

{
x × [

n̂(E ·A) − A(n̂·E) − E(n̂ · A)
]}s

dS. (D2)

Notice that the volume integral of the left-hand side of (D1) has been transformed into a
surface integral by making the replacements ∂k → (n̂)k and

∫
V d3x → ∮

S dS. Clearly, (D2)
implies (19).

Appendix E. Vanishing of LR for the charge-solenoid configuration

Using the Faraday’s induction law ∇ × E = −(1/c)∂B/∂t , (19) takes the form

LR = − 1

4πc2

∂

∂t

∫
V

x ×(B × A
)
d3x . (E1)

Let us now apply this formula to the particular case of the charge-solenoid configuration by
writing down x=ρρ̂+zẑ and A = Aout(x) = Φφ̂/(2πρ). It follows that

− 1

4πc2

∂

∂t

∫
V

x ×(B × A) d3x = − Φ

8π2c2

∂

∂t

∫
V

ρρ̂ ×(B × φ̂
)
dρdφdz

− Φ

8π2c2

∂

∂t

∫
V
zẑ ×(B × φ̂

)
dρdφdz. (E2)

The magnetic field B = Bρ ρ̂ + Bφ φ̂ + Bz ẑ is a Lienard–Wiechert field produced by the
encircling charge, which can be decomposed as B = Bv + Ba , where Bv is a velocity field
varying like 1/R2 and Ba is an acceleration field varying like 1/R. Using this decomposition
in (E2) and performing the specified operations, we obtain

− 1

4πc2

∂

∂t

∫
V

x ×(B × A) d3x

= − Φ φ̂

8π2c2

∂

∂t

[ ∫
V

ρBv
ρ dρdφdz +

∫
V

ρBa
ρ dρdφdz

]

− Φ φ̂

8π2c2

∂

∂t

[ ∫
V
zBv

z dρdφdz +
∫
V
zBa

z dρdφdz

]
. (E3)

The components Bv
ρ,Ba

ρ,Bv
z and Ba

z should be now specified. To simplify the problem, let us
assume that the charged particle is moving with a non-relativistic velocity and consider that
the charge moves in a circle of radius a outside the solenoid at constant angular velocity w.
The required components of the magnetic field B read

Bv
ρ = 0, (E4)

Ba
ρ = qw2az sin (φ − wtr)

c2[ρ2 + z2 + a2 − 2aρ cos (φ − wtr)] , (E5)

Bv
z = − qwa[ρ cos (φ − wtr) − a]

ρ2 + z2 + a2 − 2aρ cos (φ − wtr)
, (E6)
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Ba
z = qw3a2[ρ cos (φ − wtr) − a]2

c2[ρ2 + z2 + a2 − 2aρ cos (φ − wtr)]3/2

− qw2aρ sin (φ − wtr)

c2[ρ2 + z2 + a2 − 2aρ cos (φ − wtr)] , (E7)

where tr = t − √
ρ2 + z2 + a2 − 2aρ cos (φ − wtr)/c is the retarded time. Using (E4) the

first integral required in (E3) vanishes
∫
V ρBv

ρ dρdφdz = 0. The second integral required in
(E3) takes the form

∫
V

ρBa
ρ dρdφdz

= qw2a

c2

∫ +∞

−∞
zdz

∫ ∞

R
ρdρ

∮
C

sin (φ − wtr)

ρ2 + z2 + a2 − 2aρ cos (φ − wtr)
dφ. (E8)

The third integral required in (E3) reads

∫
V
zBv

z dρdφdz

= −qwa
∫ +∞

−∞
zdz

∫ ∞

R
ρdρ

∮
C

ρ cos (φ − wtr) − a

ρ2 + z2 + a2 − 2aρ cos (φ − wtr)
dφ. (E9)

The four integral required in (E3) contains two pieces

∫
V
zBa

z dρdφdz

= qw3a2

c2

∫ ∞

R
ρdρ

∮
C
dφ

∫ +∞

−∞
z[ρ cos (φ − wtr) − a]2

[ρ2 + z2 + a2 − 2aρ cos (φ − wtr)]3/2 dz

− qw2a

c2

∫ +∞

−∞
zdz

∫ ∞

R
ρdρ

∮
C

sin (φ − wtr)

ρ2 + z2 + a2 − 2aρ cos (φ − wtr)
dφ. (E10)

The azimuthal integrals in (E8)–(E10) may be calculated at a fixed retarded time via a contour
integration. Here we use the Mathematica program to calculate them

∫ 2πn

0

sin (φ − wtr)

ρ2 + z2 + a2 − 2aρ cos (φ − wtr)
dφ = 0,

∫ 2πn

0

ρ cos (φ − wtr) − a

ρ2 + z2 + a2 − 2aρ cos (φ − wtr)
dφ = 0, (E11)

where n is the winding number of the charge path. At a fixed retarded time, the first z-integral
in (E10) is

∫ +∞

−∞
z[ρ cos (φ−wtr) − a]2

[ρ2+z2+a2−2aρ cos (φ−wtr)]3/2 dz=0. (E12)

Therefore, we have
∫
V ρBv

z dρdφdz = 0,
∫
V ρBa

z dρdφdz = 0,
∫
V zBv

ρ dρdφdz = 0 and∫
V zBa

ρ dρdφdz = 0 which imply the vanishing of (E3), and this means that LR = 0 for the
charge-solenoid configuration.
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Appendix F. Proof of (26)

Consider the following representation of the Dirac delta function in azimuthal coordinates:

δ{φ′ − φq(t)} = 1

2π

∞∑
m=−∞

eim[φ′−φq (t)], (F1)

where m is a real integer. Let us integrate this expression in a closed loop

∮
C

δ{φ′ − φq(t)} dφ′ = 1

2π

∞∑
m=−∞

∮
C

eim[φ′−φq (t)] dφ′. (F2)

where C denotes the charge path. If C winds n times around the solenoid then
∮
C dφ′ =∫ 2πn

0 dφ′ where n is the associated winding number and therefore (F2) reads

∫ 2πn

0
δ{φ′ − φq(t)} dφ′ = 1

2π

∞∑
m=−∞

∫ 2πn

0
eim[φ′−φq (t)] dφ′. (F3)

The integral in the right-hand side of (F3) gives
∫ 2πn

0
eim[φ′−φq (t)] dφ′ = 2 sin(πmn)

m
eim[nπ−φq (t)], (F4)

while the sum of this quantity over m yields

∞∑
m=−∞

2 sin(πmn)

m
eim[nπ−φq (t)] = 2πn. (F5)

Using (F3)–(F5) we obtain (26).
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