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Abstract
In his recently discovered handwritten notes on ‘An alternate way to handle elec-
trodynamics’ dated on 1963, Richard P Feynman speculated with the idea of getting
the inhomogeneous Maxwell’s equations for the electric and magnetic fields from
the wave equation for the vector potential. With the aim of implementing this
pedagogically interesting idea, we develop in this paper the approach of introducing
the scalar and vector potentials before the electric and magnetic fields. We consider
the charge conservation expressed through the continuity equation as a basic axiom
and make a heuristic handle of this equation to obtain the retarded scalar and vector
potentials, whose wave equations yield the homogeneous and inhomogeneous
Maxwell’s equations. We also show how this axiomatic-heuristic procedure to obtain
Maxwell’s equations can be formulated covariantly in the Minkowski spacetime.

‘He (Feynman) said that he would start with the vector and scalar potentials,
then everything would be much simpler and more transparent.’

M A Gottlieb–M Sands Conversation.4
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3 Author to whom any correspondence should be addressed.
4 M A Gottlieb comments that ‘In 2008 Matt Sands told me that in about the middle of the 2nd year of the FLP lectures
[Feynman Lectures on Physics], Feynman started to complain that he was disappointed that he had been unable to be more
original. He explained that he thought he had now found the ‘right way to do it’—unfortunately too late. He said that he
would start with the vector and scalar potentials, then everything would be much simpler and more transparent. These
notes [the five handwritten pages dated on 1963] are the only known documentation of Feynman’s ‘right way to do it.’’
Extract taken from Feynman Lecture Notes of M A Gottlieb appearing in the webpage: http://feynmanlectures.caltech.
edu/info/notes.html. To put these comments in context, we must say that Feynman was not satisfied with the standard
presentation of electromagnetism appearing in the second volume of Feynman’s Lectures [1]. Regarding this presentation
he wrote: ‘I could not think of any really unique or different way of doing it—or any way that would be particularly more
exciting than the usual way of presenting it. So I do not think I did very much in the lectures on electricity and magnetism.’

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the

author(s) and the title of the work, journal citation and DOI.

0143-0807/20/035202+16$33.00 © 2020 European Physical Society Printed in the UK 1

https://orcid.org/0000-0001-5610-1976
https://orcid.org/0000-0001-5610-1976
https://orcid.org/0000-0003-1234-2481
https://orcid.org/0000-0003-1234-2481
mailto:herasgomez@gmail.com
mailto:ricardo.heras.13@ucl.ac.uk
https://doi.org/10.1088/1361-6404/ab751a
http://www.feynmanlectures.caltech.edu/info/notes.html.
http://www.feynmanlectures.caltech.edu/info/notes.html.
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/ab751a&domain=pdf&date_stamp=2020-03-27
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/ab751a&domain=pdf&date_stamp=2020-03-27
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Keywords: Maxwell’s equations, continuity equation, causality

(Some figures may appear in colour only in the online journal)

1. Introduction

Searching through the historical Caltech archives, Gottlieb [2] recently discovered five hand-
written pages of notes dated on 13 December, 1963 in which Richard P Feynman sketched
some ideas on an alternate way to handle electrodynamics. More recently, De Luca et al [3]
have presented their version of how a part of Feynman’s ideas may be implemented so that they
may be used as a supplementary material to usual treatments on electrodynamics. Following
Feynman’s ideas to a certain extent, they heuristically obtained the Lorentz force and the
homogeneous Maxwell’s equations. Their procedure can be briefly outlined as follows.

• Following Feynman, De Luca et al [3] assume that the force on an electric charge qmoving
with velocity vj is of the generic form ( )= +F q E v Bi i j ij , where Ei and Bij are functions of
space and time to be determined (summation on repeated indices is understood). Next, this
3-force is assumed to be the spatial component of a 4-force. Considering the relativistic
transformation of this 4-force, the form of the 3-force is found to be: ( )= + ´qF E v B
where B represents the independent components of Bij (they make =c 1). Through this
procedure the relativistic transformations of the vectors E and B may be identified with
those of the electric and magnetic fields and this leads to the conclusion that

( )= + ´qF E v B is the Lorentz force. We should emphasize that this procedure to
obtain the Lorentz force was roughly sketched out by Feynman in his handwritten notes. In
our opinion, however, Feynman’s route to the Lorentz force is criticisable: The hypothesis
of a force linear in the velocity is not sufficiently well justified. But we must also recognize
that the derivation of a Lorentz-like force from relativistic considerations and the
assumption of a force depending linearly on velocity are conceptually interesting.

• De Luca et al [3] assume the relativistic action [ ]ò= - - m
mS m s qA xd d

t

t
0

1

2 , where Aμ is

the 4-potential (they now use relativistic notation). They then vary this action to find the
force [ ( )]= -F - ¶ ¶ + ´  ´q tF A v A . Comparison of this force with the
previously obtained Lorentz force yield the relations = -F - ¶ ¶tE A and

=  ´B A which imply the homogeneous Maxwell’s equations · =B 0 and
 ´ = - ¶ ¶tE B . This procedure based on the least action principle, which starts with
potentials and ends with the homogeneous Maxwell equations, was not drawn in
Feynman’s handwritten notes. In getting the homogeneous Maxwell equations, De Luca
et al [3] considered the Feynman’s Hughes Lectures [4]. They justify their procedure by
arguing that ‘It is conceivable that Feynman had something like this in mind in 1963,
when he wrote his notes.’5

5 This opinion of De Luca et al is questionable. In a 1966 interview with C Weiner (see, https://aip.org/history-
programs/niels-bohr-library/oral-histories/5020-1) Feynman said: ‘I have now cooked up a much better way of
presenting the electrodynamics, a much more original and much more powerful way than is in the book.’
Nevertheless, the Lagrangian approach leading to the Lorentz force used by the Luca et al [3] was well-known in the
1960s. It is hard to believe that for those years Feynman would refer to this Lagrangian approach by claiming that it
was ‘much more original.’ Furthermore, according to Dyson (see [37]) this Lagrangian approach was well-known by
Feynman at around 1948. Therefore, it is conceivable that Feynman in 1963 had in mind an original explanation
different from the Lagrangian explanation when he wrote his notes.
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Although the attempt of De Luca et al [3] to make useful Feynman’s alternate way to handle
electrodynamics is valuable, it turns out to be incomplete because the inhomogeneous Maxwell
equations: · r = E 0 and /m m ´ = + ¶ ¶ tB J E0 0 0 were not inferred. De Luca et al
recognize this incompleteness but they make no attempt to address this problem. Interestingly,
Feynman himself was not sure how to get the inhomogeneous Maxwell’s equations as may be
seen in the third point of his first handwritten page, which is partially reproduced in figure 1.
With signs of doubt (he wrote: How!?) he speculated with the idea that such inhomogeneous
equations could be obtained from the wave equation for the vector potential or from ‘other
principle.’ It is not surprising that Feynman was interested in following the unconventional
route of starting with potentials before considering the inhomogeneous Maxwell’s equations.
Feynman liked the idea that potentials and fields had the same level of reality. In the context of
the Aharonov–Bohm effect and referring to the vector potential A and the magnetic field B, he
wrote [5]: ‘A is as real as B-realer, whatever that means.’

We think that the speculative idea raised by Feynman of introducing potentials before
fields is pedagogically interesting and deserves to be explored. In this sense it is pertinent to say
that in the traditional presentation of Maxwell’s equations appearing in textbooks, potentials are
introduced using the homogeneous Maxwell’s equations. The electric and magnetic fields
expressed in terms of the scalar and vector potentials are then used in the inhomogeneous
Maxwell’s equations, obtaining explicit retarded forms of these potentials. The reversed idea of
introducing first retarded potentials satisfying wave equations and then deriving the homo-
geneous Maxwell’s equations does not seem to have been explored so far, at least in the
standard literature available to us. However, we believe that the idea exploring alternative
presentations of Maxwell’s equations is important for pedagogical and conceptual reasons.

In this paper we suggest that the ‘other principle’ to obtain the inhomogeneous Max-
well’s equations mentioned by Feynman may be the principle of local charge conservation
represented by the continuity equation. We show how a heuristic procedure involving formal
operations on the continuity equation evaluated at the retarded time leads to a first-order
equation in which we identify the retarded scalar and vector potentials. We then apply the
D’Alembertian operator to the retarded potentials, obtaining the wave equations they satisfy.
In the final step, we use these wave equations to get not only the inhomogeneous Maxwell’s
equations but also the homogeneous ones. Our approach is axiomatic in the sense that it starts
with the continuity equation as the basic axiom but it is also heuristic in the sense that this
equation is heuristically handled. We also show that this axiomatic-heuristic procedure to
obtain the full set of Maxwell’s equations can be covariantly developed in the Minkowski
spacetime. To put in context our axiomatic-heuristic procedure, it is pertinent to mention that
in a series of papers [6–8] which originated some comments [9, 10] and their respective
replies [11, 12], one of us has developed the idea of getting Maxwell’s equations by starting
with the continuity equation evaluated at the retarded time but without appealing to potentials
as we now do in the present paper. In the cited papers it has been argued that charge
conservation and causality, respectively represented by the local continuity equation and the
retarded time are the cornerstones on which Maxwell’s equations are based and therefore they
can be considered to be the two fundamental postulates for these equations. It is worth
mentioning that although Maxwell’s equations are universally accepted, the question of what
their fundamental physical postulates are remains a topic of discussion and debate [13–19].

The derivation of Maxwell’s equations presented here in its three-dimensional and four-
dimensional versions, which considers potentials as primary quantities and fields as derived
quantities, may be useful to grasp the background of Maxwell’s theory and may be presented
in undergraduate courses of electromagnetism.
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2. Introducing the potentials Φ and A before the fields E and B

The electric charge conservation can locally be expressed by the continuity equation

· ( )r
 +

¶
¶

=
t

J 0, 1

where ρ and J are the localised charge and current densities6 which are functions of space and
time. Our approach to obtain Maxwell’s equations involves two ingredients: The basic axiom

Figure 1. Extract of Feynman’s first handwritten page entitled ‘Alternate Way
to Handle Electrodynamics.’ The point 3 states: ‘Third Get the other two field
equations .... HOW!? By relativity (to) = A j2 ? or other principle? .... Or By
experimental discussion of Coulomb law (surely include), Ampere Law etc.’
Reproduced with the permission of the estate of Richard P. Feynman and The
California Institute of Technology.

6 By localised we mean that the densities ρ and J are zero outside a finite region of space. We note that ρ and J could
be also non-localised sources. But in this case they should vanish sufficiently rapidly at spatial infinity so that the
surface integrals involving these sources vanish at infinity.
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expressed by the continuity equation and a heuristic handle of this equation which involves
the concept of causality.

We then assume the existence of certain functions of space and time which are causally
produced by these localised charge and current densities. Let us call these other unknown
functions ‘the potentials.’ We will justify this name later. We additionally assume that these
potentials vanish sufficiently rapidly at spatial infinity so that the surface integrals containing
these potentials vanish at infinity. Our first task will consist in finding the explicit form of
these unknown potentials and the equations they satisfy. The causal connection between the
expected potentials and their sources ρ and J means that the latter precede in time to the
former, i.e. the potentials calculated at the field point x at the time t are caused by the action of
their sources ρ and J a distance ∣ ∣= - ¢R x x away at the source point x′ at the retarded time
¢ = -t t t0. It is clear that >t 00 is the time required for the carrier of the charge-potential
connection to travel the distance R between the source point x′ and the point x. Consider now
that the carrier of the interaction is the photon which moves in a straight line at the speed of
light c in vacuum. This implies =t R c0 and thus the retarded time takes the form:
¢ = -t t R c. Put differently, causality demands that the unknown potentials must be
determined by their sources ρ and J evaluated at the retarded time. We then enclose the terms
of the left of (1) in the retardation symbol [ ] which indicates that the enclosed quantity is to
be evaluated at the source point x′ at the retarded time ¢ = -t t R c,7

⎡
⎣⎢

⎤
⎦⎥[ · ] ( )r

¢ +
¶
¶ ¢

=
t

J 0. 2

We now multiply the first term of (2) by the factor ( )m pR40 and the second term of (2) by the
equivalent factor ( )p Rc1 4 0

2 ,8 where 0 and m0 are constants satisfying the relation
m = c10 0

2, and integrate over all space, obtaining the equation

[ · ] [ ] ( )ò ò
m
p p

r¢
¢ +

¶ ¶ ¢
¢ =

R
x

c

t

R
x

J
4

d
1 1

4
d 0. 30 3

2
0

3

With the idea of taking out the derivative operators from the integrals in (3), we perform
an integration by parts in the first term of (3), in which we use the result [20]:
[ · ] · ([ ] ) · ([ ] )¢ =  + ¢R R RJ J J and the fact that the surface integral arising from
the term · ([ ] )¢ RJ vanishes at spatial infinity because J is localised. Next we use the result
[6]: [ ] [ ]r r¶ ¶ ¢ = ¶ ¶t t in the second term of (3). After performing the specified operations,
the final result reads

⎧⎨⎩
⎫⎬⎭{ }· [ ] [ ] ( )ò ò

m
p p

r
 ¢ +

¶
¶

¢ =
R

x
c t R

x
J

4
d

1 1

4
d 0. 40 3

2
0

3

The terms within the curly braces {K} are determined by the retarded values of the sources J
and ρ. We call these terms the retarded vector potential A and the retarded scalar potential Φ:

[ ] [ ] ( )ò ò
m
p p

r
= ¢ F = ¢

R
x

R
xA

J
4

d ,
1

4
d . 50 3

0

3

7 A nice interpretation of equation (2) has been given in [6]: ‘Consider an observer at a particular location in space
who has a watch that reads a particular time. The observer is surrounded by nested spheres, on each of which there is
a well-defined retarded time (with respect to the observer). Equation (2) states that the continuity equation holds (or
rather, held) on each of those spheres, at the relevant retarded time.’
8 The presence of the R1 pieces in these factors is consistent with our assumption that the envisioned potentials
vanish sufficiently rapidly at spatial infinity and guarantee that such potentials are uniquely determined.
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These are the potentials we were looking for. Thus, equation (4) takes the compact form

· ( ) +
¶F
¶

=
c t

A
1

0. 6
2

In the standard presentation of Maxwell’s equations, the relation (6) is interpreted as a gauge
condition, the so-called Lorenz condition. In our presentation, equation (6) should be rather
interpreted as a field equation for potentials. At this stage we wonder what other field
equations satisfy the potentials A and Φ. We then apply the D’Alembert operator

( )º  - ¶ ¶ c t12 2 2 2 2 to the potentials in (5), use the result [6]:

{ }[ ] [ ] ( ) ( )p d= - - ¢



R

x x4 , 72

where  is a function of space and time and δ is the Dirac delta function,9 and finally
integrate the resulting expressions over all space. After this calculation, we get two wave
equations

( )m
r

= - F = -


 A J, . 82
0

2

0

These are the second-order equations we were looking for. They imply expressions for the
charge and current densities: m= - J A2

0 and r = - F 0
2 that satisfy the continuity

equation

⎛
⎝⎜

⎞
⎠⎟· · ( )r

m
 +

¶
¶

= -  +
¶F
¶

=
t c t

J A
1 1

0, 9
0

2
2

because of (6). The retarded potentials A and Φ given in (5) constitute the causal solution of
the set formed by equations (6) and (8). This solution is shown to be unique [21].10

Equations (8) form a set of second-order equations connecting the potentials A and Φ

with their sources J and ρ. A question arises: could there be a set of first-order field equations
equivalent to the set of equations in (8)? Let us investigate this possibility. Using the identity

( · ) ( ) º   -  ´  ´A A A2 and (6) and (8) we get the equivalent system of
equations

⎧⎨⎩
⎫⎬⎭· ( )r

 -F -
¶
¶

=
t

A
, 10

0

⎧⎨⎩
⎫⎬⎭{ } ( )m ´  ´ -

¶
¶

-F -
¶
¶

=
c t t

A
A

J
1

. 11
2 0

We realize that the quantity { }-F - ¶ ¶tA appears in both (10) and (11), and this does
not seem to be a fortuitous coincidence. This quantity together with its partner { } ´ A
could be physically significant. Let us introduce the fields E and B through the equations

9 Equation (7) is proved in [6]. As pointed out in [18] this identity is true for functions  such that the quantities
[ ] R have not the form [ ] ( )[ ]= R f R F . If for example ( ) =f R R then [ ] [ ]= R R F . It follows that

( [ ]) = R F 02 since the quantity [ ] ( )p d- - ¢R F x x4 vanishes for ¹ ¢x x because of the delta function and also for
= ¢x x because this equality implies R=0.

10 Using relativistic notation, Anderson in [21] has shown that the retarded potentials satisfy a set of sufficient initial
and boundary conditions to guarantee their uniqueness. It is clear that our approach to Maxwell’s equations does not
consider the gauge symmetry because we have constructed retarded potentials with the property to be unique. In
other words: we have no gauge freedom in our approach to Maxwell’s equations.
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( )= -F -
¶
¶

=  ´
t

E
A

B A, . 12

This justifies the name of potentials to the functions A and Φ. According to (12) these
potentials determine the fields E and B. In terms of E and B, (10) and (11) take the compact
form

· ( )r
 =


E , 13

0

( )m ´ -
¶
¶

=
c t

B
E

J
1

. 14
2 0

We note that the divergence of (14) together with (13) yield (1) back. Clearly, we have
inferred other equivalent expressions for J and ρ, namely, m=  ´ - ¶ ¶ tJ B E0 0 and

·r =  E0 , which satisfy the continuity equation (1). Of course, (13) and (14) must be
completed with other two equations that specify the quantities · B and  ´ E as dictated
by the Helmholtz theorem [22]. These other equations are not difficult to find. We quickly
note that the fields E and B given in (12) imply the other two field equations

· ( ) =B 0, 15

( ) ´ +
¶
¶

=
t

E
B

0. 16

The set formed by the first-order equations (13)–(16) is equivalent to the set formed by the
second-order equation (8) together with the equation (6). The set of equations (13)–(16) is
uniquely determined whenever we adopt boundary conditions for the fields E and B that are
consistent with those of the potentials A and Φ.

In order to find the significance of the fields E and B we use (5) and (12) and obtain the
retarded solutions of (13)–(16):

[ ] [ ] ( )ò ò
r

p p
= - ¢ -

¶
¶

¢
 R

x
t c R

xE
J

4
d

4
d , 17

0

3

0
2

3

[ ] ( )ò p
=  ´ ¢

 c R
xB

J
4

d . 18
0

2
3

It becomes evident that E and B are retarded fields. The system formed by the coupled four
first-order equations (13)–(16) imply a system formed by two uncoupled second-order
equations. To find the latter system we apply the d’Alembertian operator ,2 to (17) and (18),
use (7), and integrate the resulting expressions over all space to get the wave equations

( )r m m=  +
¶
¶

= -  ´


 
t

E
J

B J
1

, . 192

0
0

2
0

Our task will be complete if we identify 0 and m0 with the vacuum permittivity and the
vacuum permeability. With this identification, the potentials Φ and A are the electromagnetic
scalar and vector potentials and the fields E and B are the electric and magnetic fields.

We have obtained two equivalent versions of electromagnetic field equations. The first
one is represented by equations (6) and (8) which are expressed in terms of the retarded scalar
and vector potentials defined in (5) and the second one is represented by equations (13)–(16)
which are expressed in terms of the retarded fields defined by equations (17) and (18). This
second version of the equations is identified with the familiar Maxwell’s equations.
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Let us emphasize that the fundamental elements of our axiomatic-heuristic approach to
find the Maxwell equations were the principle of charge conservation expressed by the
continuity equation (the basic axiom) and an heuristic handle of this equation which involved
the principle of causality represented by the retarded time.

3. Introducing the four-potential Aμ before the electromagnetic field Fμν

The preceding axiomatic-heuristic approach can also be used to obtain the Maxwell equations
in the four-dimensional Minkowski spacetime. Let us introduce the corresponding notation. A
point is denoted by { } { }= = =mx x x x ct x, ,i0 and the signature of the metric is (+, −, −,
−). Greek indices run from 0 to 3 and Latin indices run from 1 to 3. The summation
convention on repeated indices is adopted.

The continuity equation in the four-space is elegantly simple:

( )¶ =n
nJ 0, 20

where nJ is the four-current which is assumed to be a localised function of spacetime and ¶m is
the four gradient. Our basic axiom is now represented by the covariant form of the continuity
equation. A heuristic manipulation of this equation will lead us to the manifestly covariant
form of Maxwell’s equations.

Our first task consists in finding a four-potential which is causally connected with the
four-current via a covariant equation. The causal connection will be now implemented
through the retarded Green function ( )= ¢G G x x, for the four-dimensional wave equation:

( )( )d¶ ¶ = - ¢m
mG x x ,4 where ¶ ¶ = -m

m 2 is the wave operator and ( )( )d - ¢x x4 is the four-
dimensional delta function. Integration of this wave equation yields the explicit form:

{ } ( )d p= ¢ - +G t t R c R4 .11 The function G satisfies the property ¶ = -¶¢m mG G. We
now evaluate (20) at the source point ¢x and multiply the resulting equation by m G0 and
integrate over all spacetime, obtaining

( )ò m ¶¢ ¢ =n
nG J xd 0. 210

4

After an integration by parts in (21), in which we use the relation ¶¢ =n
nG J

( ) ( )¶ + ¶¢n
n

n
nGJ GJ and the fact that the surface integral originated by the term ( )¶¢n nGJ

vanishes at spatial infinity, we take out the operator ¶n from the integral in (21) and obtain

( )ò m¶ ¢ =n
nGJ xd 0. 220

4

The integral in (22) must have some significant interpretation, we call it the four-potential

( )òm= ¢n nA GJ xd , 230
4

in terms of which (22) becomes elegantly simple compact:

( )¶ =n
nA 0. 24

In the next step we take the wave operator ¶ ¶m m to (23), use the result ( )( )d¶ ¶ = - ¢m
mG x x4

and integrate over all spacetime to obtain the wave equation

11 A heuristic way to get this Green function is discussed in [8]. Notice that this retarded form of the function G is
not explicitly Lorentz-invariant. An equivalent form of the function G which is Lorentz-invariant is given by

( ) ( ) [( ) ] ( )d p¢ = Q - ¢ - ¢D x x x x x x, 2 ,r 0 0
2 where Θ is the theta function. See [23].
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( )m¶ ¶ =m
m n nA J . 250

This is the covariant equation we were looking for. It clearly provides an expression for the
four-current m= ¶ ¶n

m
m nJ A 0 that satisfies the continuity equation

( )
m

¶ = ¶ ¶ ¶ =n
n

m
m

n
nJ A

1
0, 26

0

because of (24). Equation (25) is a second-order equation that causally connects the four-
potential nA with the four-current nJ . Are there two first-order equations equivalent to the
equation (25)? The answer is in the affirmative. We combine (24) and (25) to get the equation

{ } ( )m¶ ¶ - ¶ =m
m n n m nA A J . 270

We strongly suspect that the antisymmetric tensor ¶ - ¶m n n mA A could be physically
significant. We find convenient to label this antisymmetric tensor as

( )= ¶ - ¶mn m n n mF A A , 28

in terms of which (27) takes the elegant form

( )m¶ =m
mn nF J . 290

This provides us another expression for the four-current m= ¶n
m

mnJ F 0 that satisfies the
continuity equation

( )
m

¶ = ¶ ¶ =n
n

m n
mnJ F

1
0, 30

0

because ¶ ¶ ºm n
mnF 0 since the operator ¶ ¶m n is symmetric in the indices μ and ν and the

tensor mnF is antisymmetric in these indices. On the other hand, any antisymmetric tensor
field mnF in the four-space has an associated a dual tensor defined by ( )e=mn mnab

abF F1 2* ,
where emnab is the four-dimensional Levi-Civita symbol with e = 10123 . A generalised
Helmholtz theorem [22, 24] states that an antisymmetric tensor field is completely determined
by specifying its divergence and the divergence of its dual. We can show that the dual of (28)
is given by e= ¶mn mnab

a bF A* and its divergence reads e¶ = ¶ ¶m
mn mnab

m a bF A ,* whose right-
hand side identically vanishes because emnab is antisymmetric in the indices μ and α and the
operator ¶ ¶m a is symmetric in these indices. Therefore the additional required field equation is
given by

( )¶ =m
mnF 0. 31*

The set formed by equations (24) and (25) is equivalent to the set formed by equations (29)
and (31). Let us write (28) as ( )d d= ¶ - ¶mn

l
n m

l
m n lF A , were dl

n is the Kronecker delta. Using
this expression for mnF together with (23) we obtain

( ) ( )òm d d= ¶ - ¶ ¢mn
l
n m

l
m n lF GJ xd . 320

4

We now take the wave operator ¶ ¶a a to (32), use ( )( )d¶ ¶ = - ¢m
mG x x4 and integrate over all

spacetime, obtaining the wave equation

( ) ( )m¶ ¶ = ¶ - ¶a
a mn m n n mF J J . 330

Our task will be complete if we appropriately specify the components of the four-current mJ ,
the four-potential mA , the electromagnetic field mnF and its dual mnF* . The four gradient is
defined by {( ) }¶ = ¶ ¶ m c t1 , . Therefore, if we write
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{ } { } ( )r= = Fn nJ c A cJ A, , , , 34

then (23)–(25) reproduce (5), (6) and (8) respectively. Similarly, if we write

( ) ( ) ( ) ( ) ( )e e= = - = =F c F F F cE B B E, , , , 35i i ij ijk
k

i i ij ijk
k

0 0* *

where ( )E i and ( )B k are the Cartesian components of the fields E and B, then (29), (31) and
(32) reproduce (13)–(18).

We have obtained two equivalent covariant versions of the electromagnetic field
equations in the Minkowski spacetime. The first one is represented by equations (24) and (25)
which are expressed in terms of the retarded four-potential defined in (23). The second one is
represented by equations (29) and (31) which are expressed in terms of the retarded
electromagnetic field (32) and its dual. This second version of the equations is identified with
the covariant form of Maxwell’s equations. The basic physical ingredients of our axiomatic-
heuristic procedure to find these equations were charge conservation mathematically repre-
sented by the covariant form of the continuity equation and a heuristic handling of this
equation involving the retarded Green function of the wave equation.

4. Discussion

How should we interpret the procedure proposed here to obtain Maxwell’s equations? Have
we really made a derivation of these equations or just a construction of them?

Following the traditional procedure starting with Maxwell’s equations, one introduces
potentials and derives their wave equations (by adopting the Lorenz condition). By assuming
appropriate boundary conditions the solutions of these wave equations yield the retarded
potentials which are then differentiated to get the corresponding retarded electric and
magnetic fields. This conventional procedure is logically well-structured and then one can
conclude that if Maxwell’s equations are postulated from the beginning then one can derive
the retarded potentials and hence their corresponding fields. End of the story.

On the other hand, the reverse procedure starting with the retarded potentials and ending
with Maxwell’s equations does not seem to be simple at first sight. Suppose that by some
means (which of course does not involve the Maxwell equations) we have found the retarded
potentials (5). Differentiating these potentials one obtains their wave equations (8) and (6).
Combining (6) and (8) one infers equations (10) and (11) which are then identified with the
inhomogeneous Maxwell’s equations whenever the electric and magnetic fields are defined as
(12). In the final step, one uses these definitions of fields to obtain the homogeneous Max-
well’s equations. This reversed procedure is conceptual and pedagogically significative as
long as one can convincingly justify the existence of the retarded potentials without explicitly
appealing to Maxwell’s equations. This is the most difficult problem to solve.

But there is a conceptual disadvantage in the traditional procedure. If one postulates
Maxwell’s equations from the beginning then the task of identifying the basic postulates of
these equations loses its meaning. On the contrary, the reversed procedure starting with
retarded potentials can help to elucidate the nature of these postulates. In the task of finding
these potentials, we have argued that charge conservation should be considered the funda-
mental axiom underlying Maxwell’s equations.

Clearly, the interest sketched by Feynman in his handwritten notes was how to obtain
Maxwell’s equations by starting with potentials and using physical principles like relativity
and charge conservation. In this aim we think the recourse of heuristic arguments is una-
voidable. Put differently, the procedure followed by De Luca et al [3] to arrive at the Lorenz
force and the homogeneous Maxwell’s equation as well as our procedure to arrive at the
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inhomogeneous and homogeneous Maxwell’s equations could be interpreted as constructive
procedures. In this kind of procedures one makes use of heuristic arguments to show the
existence of a mathematical object by providing a method for creating the object. Of course,
one generally has knowledge of this object by other means. In this perspective, our procedure
to obtain Maxwell’s equations could be considered as a constructive method to demonstrate
the existence of retarded potentials which leads to the electric and magnetic fields satisfying
Maxwell’s equations. In other words, from a conceptual point of view our procedure could
(and should!) be formulated as an existence theorem. Let us enunciate this theorem.

Existence Theorem. Let ( ) tx, and ( ) tx, be a vector and scalar functions which are
spatially localised and satisfy the continuity equation

· ( ) +
¶
¶

=


t
0. 36

If this equation is evaluated at the source point x′ at the retarded time ¢ = - t t R with 
being a constant with units of velocity, then there exist the retarded scalar and vector
functions: ( ) tx, and ( ) tx, defined by

[ ] [ ] ( )ò òp p
= =¢ ¢






R
x

R
x

1

4
d ,

1

4
d , 373 3

that satisfy the equation

· ( ) +
¶
¶

=


t
0, 38

where the retardation symbol [ ] indicate that the enclosed quantity is to be evaluated at the
source point at the retarded time.

Corollary 1. The functions  and  in (37) satisfy the wave equations

◻ ◻ ( )= - = - , , 392 2

where ( )º  - ¶ ¶  t12 2 2 2 2.

Corollary 2. There exist retarded fields: ( ) tx, and ( ) tx, defined by

( )= - -
¶
¶

=  ´


 



t

1
, , 40

2

that satisfy the field equations

· ( ) =  ´ +
¶
¶

=  




t
,

1
0, 41

2

· ( ) =  ´ -
¶
¶

= 



t

0, . 42

The proof of this general theorem and the proof of its corollaries are entirely similar to those
given in the section 2 for the particular case of electromagnetic expressions in SI units.12

12 The formulated theorem is of general character and can be applied to scalar and vector source functions of
theories different from that of Maxwell. However, if we make the specifications r= = =  c J, , ,

b a= = F A , , / /b a= = B E, where a bc= c2 then the theorem describes the Maxwell equations in
a form independent of specific units. More precisely, this specification describes Maxwell’s equations in the ‘abc’
system which involves the Gaussian, SI, and Heaviside–Lorentz unit systems. See [6, 25].
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Furthermore, if we make the particular specifications

( )/ /r m m= = = = = F = =      c J A B E, , , , , , , 430 0 0 0

in the general theorem and its corollaries then we obtain the corresponding electromagnetic
expressions in SI units. In the Minkowski spacetime the existence theorem is indeed elegant.

Existence Theorem. Let n a localised four-vector that satisfies the continuity equation
¶ =n

n 0 then there exists a four-vector n defined as

( )ò= ¢n n  xd , 444

that satisfies the field equation ¶ =n
n 0, where the Green function is defined by

{ } ( )d p= ¢ - + t t R R4 with  being a constant with units of velocity.

Corollary 3. The four-vector n satisfies the wave equation ¶ ¶ =m
m n n  ,

where ( )¶ ¶ = - + ¶ ¶m
m  t12 2 2 2.

Corollary 4. There exists the antisymmetric tensor = ¶ - ¶mn m n n m   that satisfies the
field equations ¶ =m

mn n  and ¶ =m
mn 0* , where e= ¶mn mnab

a b * .

The proof of this covariant form of the theorem and the proof of its corollaries are
entirely similar to those given in the section 3 for the case of electromagnetic expressions in
SI units. If = c then = G. If in this case we make =n n J and m=n n A 0 with

( )= FnA c A, then (44) becomes (23) and nA is the electromagnetic four-potential in SI
units.

It is possible consider a different heuristic handle of the continuity equation (the basic
axiom) to formulate a theorem that is equivalent to the previously considered existence
theorem. For example, we can formulate the following existence theorem [6]: Given the
localised sources ( )r tx, and ( )x tJ , satisfying the continuity equation · r + ¶ ¶ =tJ 0
there exist the retarded fields ( )tF x, and ( )tG x, defined by

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

ˆ
[ ]

ˆ
( )ò

a
p

r
r

= +
¶
¶

-
¶
¶

¢
R Rc t Rc t

xF
R R J

4

1
d , 45

2 2
3

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟[ ]

ˆ ˆ
( )ò

b
p

= ´ +
¶
¶

´ ¢
R

J

t Rc
xG J

R R
4

d , 46
2

3

that satisfy the following field equations: · ·ar c =  =  ´ + ¶ ¶ =tF G F G, 0, 0
and ( )b a b ´ - ¶ ¶ =tG F J. Here ˆ ( ) ∣ ∣= = - ¢ - ¢RR R x x x x and equations (45)
and (46) are in the ‘abc’ system defined by a bc= c2. In this case the axiomatic-heuristic
approach shows the existence of the electric and magnetic fields in the generalized form of
Coulomb and Biot-Savart laws given by Jefimenko [6] which satisfy Maxwell’s equations.

Similarly, an alternate heuristic manipulation of the continuity equation in the Min-
kowski spacetime leads to the existence of an electromagnetic tensor satisfying the covariant
form of Maxwell’s equations. This is a consequence the following existence theorem [7]:
Given the localized four-vector m satisfying the continuity equation ¶ =m

m 0 there exists
the antisymmetric tensor field
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( ) ( )ò= ¶¢ - ¶¢ ¢mn m n n m    xd , 474

that satisfies the field equations: ¶ =m
mn n  and ¶ =m

mn* 0, where ( )e=mn mnab
ab 1 2*

is the dual of mn and { } ( )d p= ¢ - + t t R R4 with  being a constant whose units are
of velocity. If we make the identification = c then = G and if in addition we make

m=m n J0 with ( )r=nJ c J, then =mn mn F is the electromagnetic field tensor in SI units.
The point to remark is that in the proof of an existence theorem of an object, one is

generally free to use all heuristic devices that allows one to exhibit the explicit form of such
an object. This is the more essential aspect of a constructive approach.

5. On the postulates of Maxwell’s equations

Most authors agree that the continuity equation is a consequence of Maxwell’s equations [26].
Other authors state that it is an integrability condition of these equations [27, 28]. Some other
authors are more cautious and claim that Maxwell’s equations are consistent with the con-
tinuity equation [23, 29]. Although Maxwell’s equations formally imply the continuity
equation, the idea that the latter is a consequence of the former is in a sense questionable. The
fact is that the continuity equation has its own existence independent of Maxwell’s equations.
This can be illustrated by the fact that there are field equations of different electromagnetic
theories that are also consistent with the continuity equation. For example, one of these
theories arises when the Faraday induction term of Maxwell’s equations is eliminated,
obtaining the field equations of a Galilean-invariant instantaneous electrodynamics [30, 31].
Other examples are the Proca equations of the massive electrodynamics [32] and the field
equations of an electrodynamics in an Euclidean four-space [33, 34]. Therefore, one should
interpret the continuity equation as a formal representation of the principle of charge con-
servation, but having always in mind that this principle is not exclusive of Maxwell’s theory.

Accordingly, we can equally use the continuity equation to formulate other existence
theorems for potentials or fields which can be applied to the aforementioned alternative
electromagnetic theories. Here we have evaluated this equation at the retarded time to
obtain Maxwell’s equations. But we can equally evaluate this equation at present time,
for example, and following a similar heuristic procedure we will obtain the field equations
of a Galilean-invariant instantaneous electrodynamics in Gaussian units [30, 31]:

· ·pr =  =  ´ =E B E4 , 0, 0 and ( ) ( )p ´ - ¶ ¶ =c t cB E J1 4 . However,
this does not prevent us to consider that the continuity equation is the cornerstone on which
Maxwell’s equations can be constructed. It is in this sense that we claim that charge
conservation must be unavoidable considered as one of the basic postulates of Maxwell’s
equations. It has been argued that the other basic postulate may be the principle of causality
[6–8] represented by the retarded time or by the retarded Green function of the wave
equation. Of course, we can integrate these two postulates in a single fundamental postulate
which would state that the continuity equation is valid at all times. Therefore, evaluating
this equation at a particular time is not a new postulate but only one special case of the
fundamental postulate.

The alert reader might argue that if charge conservation is really the fundamental phy-
sical principle underlying Maxwell’s equations then one should be able to obtain these
equations using only the continuity equation without making any further assumptions. In our
opinion this demand is very hard to satisfy, at least at the level in which we call basic
postulates in physics. Furthermore, as already pointed out, the continuity equation may imply
other fields equations depending on the ‘further assumptions.’ Let us give an example to
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illustrate our point. Most physicists would agree that the basic postulates used to derive the
Lorentz transformations are the principle of relativity (the first postulate), which states that
physical laws must exhibit the same form in inertial frames, and the constancy of the speed of
light (the second postulate), which states that the speed of light is the same in inertial frames.
What is not well-known is that in 1887, Voigt [35] used these same two postulates and
derived a set of spacetime transformations different from the Lorentz transformations [36]. In
other words, the same postulates may lead to distinct spacetime theories! The explanation is
simple, the basic postulates are the same but there are different additional assumptions
(implicit or explicit) underlying in the derivation of Lorentz and Voigt transformations. We
think such additional assumptions are important but they do not qualify to be fundamental
postulates.

Similarly, charge conservation can be seen as a basic postulate which requires of some
additional considerations to imply Maxwell’s equations. One of these additional assumptions
is, for example, the retarded time or the retarded Green function of the wave equation.
Nevertheless, we should point out that this assumption is sufficient but not necessary since we
could equally assume the advanced time ( )/= +¢t t R c or the advanced Green function of
the wave equation ( { } ( ))d p= ¢ - -G t t R c R4 and obtain Maxwell’s equations as well.
Put differently, charge conservation is a basic postulate (fully justified by experimental
considerations) and causality (represented by the retarded time or the retarded Green function
of the wave equation) is a sufficient but not a necessary assumption which—we think—does
not qualify to be a basic postulate but rather as a complementary assumption. Under this
wisdom, the idea of considering that charge conservation is the basic postulate of Maxwell’s
equations is similar to the idea of considering that the principle of relativity and the constancy
of the speed of light are the basic postulates of special relativity.

6. Concluding remarks

We have evidence that Feynman attempted to find a different derivation of Maxwell’s
equations in at least two periods of his life. The first attempt was around 1948, year in which
Feynman showed Dyson an unusual proof of the homogeneous Maxwell’s equations [37].
Dyson reconstructed Feynman’s proof as an existence theorem: if a non-relativistic particle
satisfies Newton’s law of motion and the commutation relations between its position and
velocity then there exist two fields that satisfy the Lorentz force and the homogeneous
Maxwell’s equations. The inhomogeneous Maxwell’s equations were merely assumed to be
the definitions of charge and current densities. The second attempt was at the end of 1963 as
may be seen in the Feynman’s handwritten notes recently discovered by Gottlieb [2] and
discussed by De Luca et al [3]. In this second attempt, the Lorentz force was inferred by
assuming that the force that acts on a charge is linear in its velocity and is the spatial
component of a four-force of special relativity. The homogeneous Maxwell’s equations were
obtained via the well-known principle of least action. There is a certain parallelism between
these two attempts: both were unpublished and both fail to obtain the inhomogeneous
Maxwell’s equations. In the first attempt these equations were defined but not derived and in
the second attempt they were not inferred. Charge conservation represented by the continuity
equation was not considered in both attempts. Perhaps we may never know what Feynman
had in mind in 1966 when he said that he had ‘cooked up a much better way of presenting the
electrodynamics, a much more original and much more powerful way than is in the book,’ but
it is intriguing that in his first handwritten page wrote in 1963 (see figure 1) he clearly wrote
charge conservation and not charge invariance. Was this an error or an unconscious desire?
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Here we have pointed out that charge conservation expressed by the continuity equation
is the key to obtain the Maxwell equations. We have shown that if the continuity equation
evaluated at the retarded time is heuristically handled then we can show that there exist
defined retarded potentials that imply not only the inhomogeneous Maxwell’s equations but
also the homogeneous ones. In the search for this alternative presentation of Maxwell’s
equations in which potentials are introduced before fields, we have been motivated by
Feynman’s words that [38]: ‘... there is a pleasure in recognising old things from a new point
of view. Also, there are problems for which the new point of view offers a distinct advantage.’

Acknowledgments

We dedicate this paper to the memory of Richard P Feynman† on the occasion of his 101st
anniversary.

ORCID iDs

José A Heras https://orcid.org/0000-0001-5610-1976
Ricardo Heras https://orcid.org/0000-0003-1234-2481

References

[1] Feynman R P, Leighton R B and Sands M 1963 The Feynman Lectures on Physics (Reading, MA:
Addison-Wesley)

[2] Available from the online Feynman’s Lectures on Physiscs (www.feynmanlectures.caltech.edu).
See the following website: http://feynmanlectures.caltech.edu/info/other/Alternate_Way_to_
Handle_Electrodynamics.html

[3] De Luca R, Di Mauro M, Esposito S and Naddeo A 2019 Feynman’s different approach to
electromagnetism Eur. J. Phys. 40 065205

[4] Feynman R P 1967/8 Lectures on electrostatics, electrodynamics, matter-waves interacting,
relativity. Lectures at the Hughes Aircraft Company; notes taken and transcribed by John T Neer
http://hehugheslectures.info/wp-content/uploads/lectures/FeynmanHughesLectures_Vol2.pdf

[5] Goodstein D and Goodstein J 2000 Richard Feynman and the history of superconductivity Phys.
Perspect. 2 3–47

[6] Heras J A 2007 Can Maxwell’s equations be obtained from the continuity equation? Am. J. Phys.
75 652–56

[7] Heras J A 2009 How to obtain the covariant form of Maxwell’s equations from the continuity
equation Eur. J. Phys. 30 845–54

[8] Heras J A 2016 An axiomatic approach to Maxwell’s equations Eur. J. Phys. 37 055204
[9] Jefimenko O D 2008 Causal equations for electric and magnetic fields and Maxwell’s equations:

Comment on a paper by heras Am. J. Phys. 76 101
[10] Kapuscik E 2009 Comment on ‘Can Maxwell’s equations be obtained from the continuity

equation? by Heras J A Am. J. Phys. 75 652–56
Kapuscik E 2007 Am. J. Phys. 77 754

[11] Heras J A 2008 Author’s response Am. J. Phys. 76 101–2
[12] Heras J A 2009 Reply to Comment on ‘Can Maxwell’s equations be obtained from the continuity

equation?’ by E Kapuscik Am. J. Phys. 77 754
Heras J A 2009 Am. J. Phys. 77 755–56

[13] Hehl F W and Obukhov Y N 2003 Foundations of Classical Electrodynamics: Charge, Flux, and
Metric (Boston, MA: Birkhäuser)

[14] Diener G, Weissbarth J, Grossmann F and Schmidt R 2013 Obtaining Maxwell’s equations
heuristically Am. J. Phys. 81 120–23

[15] Kosyakov B P 2014 The pedagogical value of the four-dimensional picture: II. Another way of
looking at the electromagnetic field Eur. J. Phys. 35 025013

Eur. J. Phys. 41 (2020) 035202 J A Heras and R Heras

15

https://orcid.org/0000-0001-5610-1976
https://orcid.org/0000-0001-5610-1976
https://orcid.org/0000-0001-5610-1976
https://orcid.org/0000-0003-1234-2481
https://orcid.org/0000-0003-1234-2481
https://orcid.org/0000-0003-1234-2481
http://www.feynmanlectures.caltech.edu
http://www.feynmanlectures.caltech.edu/info/other/Alternate_Way_to_Handle_Electrodynamics.html
http://www.feynmanlectures.caltech.edu/info/other/Alternate_Way_to_Handle_Electrodynamics.html
https://doi.org/10.1088/1361-6404/ab423a
http://www.thehugheslectures.info/wp-content/uploads/lectures/FeynmanHughesLectures_Vol2.pdf
https://doi.org/10.1007/s000160050035
https://doi.org/10.1007/s000160050035
https://doi.org/10.1007/s000160050035
https://doi.org/10.1119/1.2739570
https://doi.org/10.1119/1.2739570
https://doi.org/10.1119/1.2739570
https://doi.org/10.1088/0143-0807/30/4/017
https://doi.org/10.1088/0143-0807/30/4/017
https://doi.org/10.1088/0143-0807/30/4/017
https://doi.org/10.1088/0143-0807/37/5/055204
https://doi.org/10.1119/1.2825390
https://doi.org/10.1119/1.3039030
https://doi.org/10.1119/1.2826656
https://doi.org/10.1119/1.2826656
https://doi.org/10.1119/1.2826656
https://doi.org/10.1119/1.3039031
https://doi.org/10.1119/1.3039031
https://doi.org/10.1119/1.3039031
https://doi.org/10.1119/1.3039031
https://doi.org/10.1119/1.4768196
https://doi.org/10.1119/1.4768196
https://doi.org/10.1119/1.4768196
https://doi.org/10.1088/0143-0807/35/2/025013


[16] Sobouti Y 2015 Lorentz covariance almost implies electromagnetism and more Eur. J. Phys. 36
065036

[17] Hanno E and Nordmark A B 2016 Relativistic version of the Feynman–Dyson–Hughes derivation
of the Lorentz force law and Maxwell’s homogeneous equations Eur. J. Phys. 37 05520

[18] Heras R 2017 Alternative routes to the retarded potentials Eur. J. Phys. 38 055203
[19] Kosyakov B 2007 Introduction to the Classical Theory of Particles and Fields (Berlin: Springer)
[20] Jefimenko O D 1989 Electricity and Magnetism 2nd edn (Star City, WV: Electrect Scientific)
[21] Anderson J L 1967 Principles of Relativity Physics (New York: Academic)
[22] Heras R 2016 The helmholtz theorem and retarded fields Eur. J. Phys. 37 065204
[23] Jackson J D 1999 Classical Electrodynamics 3rd edn (New York: Wiley)
[24] Heras J A 1990 A short proof of the generalized helmholtz theorem Am. J. Phys. 58 154–55
[25] Heras J A and Báez G 2009 The covariant formulation of Maxwell’s equations expressed in a form

independent of specific units Eur. J. Phys. 30 23–33
[26] Griffiths D J 1999 Introduction to Electrodynamics 3rd edn (Upper Saddle River, NJ:

Prentice-Hall)
[27] Burke W L 1985 Applied Differential Geometry (Cambridge: Cambridge University Press)
[28] Betounes D 1998 Partial Differential Equations for Computational Science (New York: Springer)
[29] Zangwill A 2012 Modern Electrodynamics (Cambridge: Cambridge University Press)
[30] Jammer M and Stachel J 1980 If Maxwell had worked between ampére and faraday: an historical

fable with a pedagogical moral Am. J. Phys. 48 5–7
[31] Heras J A 2005 Instantaneous fields in classical electrodynamics Eur. Phys. Lett. 69 1–7
[32] Goldhaber A S and Nieto M M 2010 Photon and graviton mass limits Rev. Mod. Phys. 82 939–79
[33] Heras J A 1994 Euclidean electromagnetism in four space: a discussion between god and the devil

Am. J. Phys. 62 914–16
[34] Heras J A 2006 The kirchhoff gauge Ann. Phys. 321 1265–73
[35] Voigt W 1887 Uber das doppler’sche Princip Nachr. Ges. Wiss. Göttingen. 8 41–51
[36] Heras R A review of Voigt’s transformations in the framework of special relativity

arXiv:1411.2559
[37] Dyson F J 1990 Feynman’s proof of the Maxwell equations Am. J. Phys. 58 209–11
[38] Feynman R P 1948 Space-time approach to non-relativistic quantum mechanics Rev. Mod. Phys.

20 367–87

Eur. J. Phys. 41 (2020) 035202 J A Heras and R Heras

16

https://doi.org/10.1088/0143-0807/36/6/065036
https://doi.org/10.1088/0143-0807/36/6/065036
https://doi.org/10.1088/0143-0807/37/5/055201
https://doi.org/10.1088/1361-6404/aa7f18
https://doi.org/10.1088/0143-0807/37/6/065204
https://doi.org/10.1119/1.16225
https://doi.org/10.1119/1.16225
https://doi.org/10.1119/1.16225
https://doi.org/10.1088/0143-0807/30/1/003
https://doi.org/10.1088/0143-0807/30/1/003
https://doi.org/10.1088/0143-0807/30/1/003
https://doi.org/10.1119/1.12239
https://doi.org/10.1119/1.12239
https://doi.org/10.1119/1.12239
https://doi.org/10.1209/epl/i2004-10318-y
https://doi.org/10.1209/epl/i2004-10318-y
https://doi.org/10.1209/epl/i2004-10318-y
https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1103/RevModPhys.82.939
https://doi.org/10.1119/1.17681
https://doi.org/10.1119/1.17681
https://doi.org/10.1119/1.17681
https://doi.org/10.1016/j.aop.2005.12.001
https://doi.org/10.1016/j.aop.2005.12.001
https://doi.org/10.1016/j.aop.2005.12.001
http://arxiv.org/abs/1411.2559
https://doi.org/10.1119/1.16188
https://doi.org/10.1119/1.16188
https://doi.org/10.1119/1.16188
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/RevModPhys.20.367

	1. Introduction
	2. Introducing the potentials Φ and A before the fields E and B
	3. Introducing the four-potential Aμ before the electromagnetic field Fμν
	4. Discussion
	5. On the postulates of Maxwell’s equations
	6. Concluding remarks
	Acknowledgments
	References

