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Abstract In a recent study on monopole production [Eur.
Phys. J. C (2018) 78: 966], Baines et al added the poten-
tial of a magnetic dipole to the Wu-Yang potentials for the
Dirac monopole and claimed that this modified Wu-Yang
configuration does not affect the Dirac quantisation condi-
tion. In this comment, we argue that their claim is incorrect
by showing that their modified Wu-Yang configuration leads
to an infinite number of quantisation conditions. In their
study, they also incorrectly identified the magnetic field of
the monopole with the magnetic field of the Dirac string and
its attached magnetic monopole.

In their recent paper on monopole production, Baines et al
[1] have made various conceptual and formal mistakes in
connection with their idea of introducing a magnetic dipole
in the Dirac theory of magnetic monopoles [2, 3]. Here, we
wish to stress these mistakes. Our criticisms are restricted to
the electromagnetic aspects of Dirac’s theory of monopoles
and the Wu-Yang configuration [4] for the Dirac monopole.

1. The authors of the paper [1] claim that “point-like
monopoles, originally envisaged by Dirac, are sources of
singular magnetic fields for which the underlying theory,
if any, is completely unknown.” This is an incorrect state-
ment. First of all, Dirac did not envisaged point-like mag-
netic monopoles but hypothetical nodal lines (semi-infinite
magnetised lines with vanishing wave function) having the
same end point where a magnetic monopole is assumed to
exist. A quantum-mechanical argument on these nodal lines
led him to his famous quantisation condition: qg = nh̄c/2.
Here, q and g denote electric and magnetic charges, h̄ is
the reduced Planck’s constant, c is the speed of light, n rep-
resents an integer number, and we are adopting Gaussian
units. Expressed by Dirac himself [2]: “Thus at the end point
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[of nodal lines] there will be a magnetic pole of strength
[g = nh̄c/(2q)].”

On the other hand, it is not true that the theory underly-
ing point-like monopoles is “completely unknown.” On the
contrary, the classical theory of point magnetic monopoles
is well-known. It is described (in the static regime) by the
equations ∇ ·Bmon = 4πgδ (x) and ∇×Bmon = 0. Further-
more, the classical theory of the Dirac string along the z axis
is also well-known [5–7] and has been recently discussed
in a review paper on the Dirac quantization condition [8].
In the case of a string along z > 0, this theory is consis-
tently described by the static equations [6–8]: ∇ ·Bms=0 and
∇×Bms =−4πgΘ(z)

[
δ (x)δ ′(y)x̂−δ ′(x)δ (y)ŷ

]
, whose so-

lution is given by

Bms = Bmon+Bstring,

=
g
r2 r̂−4πgδ (x)δ (y)Θ(z)ẑ, (1)

where Θ(z)=0 if z <0 and Θ(z)=1 if z>0. In conclusion,
the classical theories underlying magnetic monopoles and
Dirac’s strings are well-known.

2. The authors of [1] claim that “due to the monopole’s
magnetic charge, there is a magnetic field contribution, which
however, due to the (singular) Dirac string, requires proper
regularisation.” They state that
−→
B reg

monopole =
−→
B monopole+

−→
B sing,

=
g
r2 r̂−4πgn̂Θ(z)δ (x)δ (y), (2)

is “the regularised monopole magnetic field for a Dirac string
along the z-axis, in which case the unit vector n̂ = (0,0,1)
also lies along that axis.” First of all, it is the Dirac potential
−and not its magnetic filed− which must be regularised [5–
8]. Clearly, the right-hand sides of (1) and (2) are the same

Bms =
−→
B reg

monopole, (3)
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and therefore
−→
B reg

monopole represents the magnetic field of the
Dirac string with its attached magnetic monopole. Neverthe-
less, they claim that

−→
B reg

monopole describes the “regularised”
magnetic field of the monopole and therefore they point out
that this field “yields the correct formula

∇ ·−→B reg
monopole = 4πgδ

3(r), (4)

implying that the magnetic monopole is the source of a field.”
However, the formula (4) is wrong. The correct formula is

∇ ·−→B reg
monopole = 0, (5)

which follows from taken the divergence to (2) (see [6–8]),

∇ ·−→B reg
monopole = ∇ ·−→B monopole+∇ ·−→B sing

= 4πgδ
3(r)−4πgδ

3(r). (6)

In other words, they incorrectly identify the field
−→
B reg

monopole
with the magnetic field of a magnetic monopole. From (3)
it follows that the field

−→
B reg

monopole must be identified with the
field of the Dirac string with its attached magnetic monopole.

3. The authors of [1] place a point dipole possessing the
magnetic dipole moment −→µD at the origin of a coordinate
system, where the monopole (attached to the Dirac string)
is assumed be at rest. They note that the magnetic field pro-
duced by this dipole is given by

−→
B D =

µ0

4πr3 |
−→
µD|
(
2cosθ r̂+ sinθθ̂

)
, (7)

(they work in spherical coordinates and tacitly assume that
the magnetic dipole moment is parallel to the z-axis). They
claim that “a magnetic dipole moment does not contribute
to the singular part of the magnetic field of the monopole,
which is responsible for the charge quantisation.” To support
their claim they elaborate two arguments.

According to their first argument, the charge q that en-
circles the Dirac string must be placed “far away from the
position of the monopole” and consequently the effects of
the monopole are practically ignorable. Under this assump-
tion, we can see that only the singular string magnetic field−→
B sing = −4πgn̂Θ(z)δ (x)δ (y) contributes to the phase of
the wave function of the charge. As is well-known, this sin-
gular field leads to the Dirac quantisation condition, which
explains the quantisation of the electric charge. Since the
magnetic dipole is placed at the same point that the mag-
netic monopole (the origin of coordinates) the authors as-
sume that the effects of the former are also ignorable and
conclude that “The magnetic dipole moment does not con-
tribute to the singular part of the magnetic field [

−→
B sing =

−4πgn̂Θ(z)δ (x)δ (y)], and thus the charge quantisation is
not affected.” This argument is clearly unsatisfactory. What
exactly means far away from the position of the monopole?
According to the configuration proposed by these authors,
the Dirac quantisation condition−and hence the explanation

of charge quantisation− holds only far away from the posi-
tion of the monopole and the dipole. This result disagrees
with the idea that the quantisation of the electric charge is a
universal law which does not depend on the point where we
are observing the charge. We really find unsatisfactory the
idea implied by the assumption of the authors that when ap-
proaching to the origin (where the monopole and dipole are
located), the explanation of charge quantisation provided by
the Dirac quantisation condition is no larger valid.

In their second argument, the authors invoked the well-
known Wu-Yang potentials [4]. They wrote the following
paragraph: “For the magnetic monopole gauge potential one
has the expression

−→
A S = g

1− cosθ

r sinθ
φ̂ , θ ∈

[
0,

π

2
+δ

)
δ → 0+ (8)

for the south hemisphere, which is singular at the south pole
θ = π , and

−→
A N =−g

1+ cosθ

r sinθ
φ̂ , θ ∈

(
π

2
−δ ,π

]
δ → 0+ (9)

for the north hemisphere, which is singular at the north pole
θ = 0. These two patches overlap π/2−δ < θ < π/2+δ ,
δ → 0+ , and, as is well known, the difference of

−→
A S−−→A N = ∇ f =

2g
r sinθ

φ̂ , (10)

yields a singular gauge transformation at θ = 0,π, which
contributes to the phase qe

∮
L d−→x · −→A of the charged parti-

cle wavefunction, the requirement of single-valuedness of
which yields the rule [qg = nh̄c/2].” This paragraph con-
tains two mistakes. First, they confused the North Wu-Yang
potential with the South Wu-Yang potential (see [5, 8]). Sec-
ond, they wrote (10) without specifying that the factor sinθ

necessarily takes the value 1 as δ → 0+ in the overlapped re-
gion. The correct form is

−→
A S−−→A N = ∇ f = 2gφ̂/r, which is

non-singular in the overlapped region. Apparently, the form
of (10) led them to incorrectly state that this is a singular
gauge transformation at the angles θ = 0,π . In the Wu-Yang
approach, these angles (and hence the corresponding Dirac
strings) are excluded. As is well-known, the advantage of
the Wu-Yang approach is precisely to avoid a singular gauge
transformation!

Let us write the above paragraph of the authors in a
correct way [8]. Following the Wu-Yang method [4], the
well-known Dirac potentials A′ = g(1− cosθ)φ̂/(r sinθ)

and A =−g(1+cosθ)φ̂/(r sinθ) are non-singular if we de-
fine them in an appropriate domain:

A′ = g
1− cosθ

r sinθ
φ̂ , RN : 0≤ θ <

π

2
+

ε

2
(11)

A =−g
1+ cosθ

r sinθ
φ̂ , RS :

π

2
− ε

2
< θ ≤ π (12)
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where ε > 0 is an infinitesimal quantity. The potentials A′
and A are in the Coulomb gauge: ∇ ·A = 0 and ∇ ·A′ = 0.
Furthermore, these potentials are non-global functions since
they are defined only on their respective domains: RN and
RS. The region RN , where A′ is defined, excludes the string
along the negative semi-axis (θ = π) and represents a North
hemisphere. The region RS, where A is defined, excludes
the string along the positive semi-axis (θ = 0) and repre-
sents a South hemisphere. The union of the hemispheres
RN ∪RS covers the whole space (except on the origin, where
the monopole is located). In the intersection region RN ∩RS

(the “equator”) both hemispheres are slightly overlapped.
Each one of the potentials A′ and A yield the field of a mag-
netic monopole: B = ∇×A′ = ∇×A = gr̂/r2. Therefore,
the Coulomb-gauge potentials A′ and A must be connected
by a restricted gauge transformation in the equator, i.e., in
the overlapped region π/2− ε/2 < θ < π/2+ ε/2, where
both potentials are well defined. At first glance, we would
have A′−A = 2gφ̂/(r sinθ). But in the overlapped region,
we have limsin(π/2± ε/2) = 1 as ε → 0 and therefore

A′−A =
2g
r

φ̂ = ∇(2gφ) = ∇Λ , (13)

where Λ = 2gφ is a multi-valued gauge function [Λ(φ) 6=
Λ(φ + 2π)] satisfying the Laplace equation ∇

2
Λ = 0. Un-

fortunately, it is not usually emphasised in the literature−but
it should be− that the gauge function Λ in (13) connecting
the Coulomb-gauge potentials A′ and A corresponds to a re-
stricted gauge transformation [8]. If an electric charge q is
interacts with the monopole we require two wave functions
to describe the electric charge: ψ ′ for RN and ψ for RS. In the
equator, the wave functions ψ ′ and ψ must be connected by
the phase transformation ψ ′= eiqΛ/(h̄c) ψ , which is related to
the gauge transformation (13). Substituting Λ = 2gφ in the
phase transformation, we obtain the multi-valued wave func-
tion ψ ′= ei2qgφ/(h̄c) ψ, i.e., ψ ′|φ 6=ψ ′|(φ+2π). But we require
the wave function be single-valued, i.e., ψ ′|φ = ψ ′|(φ+2π)

and therefore we require ei4πqg/(h̄c)=1 and this implies the
Dirac quantisation condition qg = nh̄c/2.

4. On the basis of their considerations on the Wu-Yang
potentials, the authors of [1] “present an equivalent, yet less
elaborate, way to see the irrelevance of the magnetic dipole
moment for the quantisation rule [qg= nh̄c/2], which avoids
the use of Dirac strings.” With this aim they state that “the
vector potential corresponding to the magnetic moment, for
large distances r from the centre of the sphere where the
monopole is located, is of the form

−→
A D =

µ0

4π

−→
µ D×−→r

r3 =
µ0

4π

|−→µ D|sinθ

r2 η̂ , (14)

with η̂ the unit vector perpendicular to the plane of −→r and
−→
µ D (assumed parallel to the z-axis); this is not singular at

the poles θ = 0,π (in fact it vanishes there). The total poten-
tial in each hemisphere is then given by the corresponding
sum
−→
A i +

−→
A D, i = S,N. Hence, the magnetic moment does

not contribute to the difference, and thus it does not affect
the wave function phase, which is associated only with the
monopole part [(10) of this comment].” We will show that
this conclusion is wrong.

Let us consider the idea of the authors to add the poten-
tial of the magnetic dipole AD to the South Wu-Yang poten-
tial (12), for example. Of course, we could equally consider
the North Wu-Yang potential (11). For consistence we adopt
Gaussian units in which the potential of the dipole reads

AD =
|µ|sinθ

cr2 φ̂ . (15)

(notice that the unit vector η̂ introduced by the authors in
(14) is the same as φ̂ because the magnetic moment is as-
sumed to be parallel to the z-axis). Thus, the “total potential"
in the South hemisphere is given by

Atotal = A+AD. (16)

This potential has azimuthal symmetry, i.e, Atotal=Atotalφ̂

and is in the Coulomb gauge ∇ ·Atotal = 0 because ∇ ·A= 0
and ∇ ·AD = 0. The subtle point here is that the South Wu-
Yang potential A is already connected with the North Wu-
Yang potential A′ by means of the restricted gauge transfor-
mation (13) which holds in the equator. Accordingly, there is
no arbitrariness in the potential A (or in the potential A′ for
the same reason). But we cannot say the same for the poten-
tial of the magnetic dipole AD which can be subject of a fur-
ther restricted gauge transformation A′D = AD+∇ξ , where
∇

2
ξ = 0. Thus there is still arbitrariness in the potential AD

which can be translated to the total potential Atotal. Put dif-
ferently, we are free to apply a restricted gauge transforma-
tion to the total potential, i.e., A′total = Atotal+∇χ where
χ is an arbitrary gauge function to the extent that it satis-
fies ∇

2
χ = 0. In fact, in the equator (where the Wu-Yang

potentials A and A′ are well-defined) the gauge function χ

may take the generic form χ = 2gφ +ξ . The first term is the
gauge function Λ = 2gφ of the gauge transformation (13)
that relates the Wu-Yang potentials and the second term is
an arbitrary gauge function ξ connecting the two Coloumb-
gauge dipole potentials AD and A′D. It is the arbitrariness of ξ

that makes χ arbitrary and consequently AD is arbitrary up to
a restricted gauge transformation. In particular, we are free
to choose ξ = kφ , where k is an arbitrary constant with units
of magnetic charge. With this choice for ξ we can consider
the restricted gauge transformation at the equator (where A
and A′ are well-defined)

A′total−Atotal =
2g+ k

r
φ̂ = ∇(2gφ + kφ) = ∇χ, (17)

where χ = (2g+ k)φ is a multi-valued gauge function sat-
isfying ∇

2
χ = 0. Following the Wu-Yang approach [4], the
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wave functions ψ ′ and ψ must be connected by the phase
transformation ψ ′ = eiqχ/(h̄c) ψ in the equator. Substituting
χ = (2g + k)φ in the phase transformation we obtain the
multi-valued wave function ψ ′ = eiq(2g+k)φ/(h̄c) ψ . The con-
dition of single-valuedness of the wave function

(
ψ ′|φ =

ψ ′|(φ+2π)

)
requires ei2πq(2g+k)/(h̄c)= 1 and this implies the

quantisation condition

q
(

g+
k
2

)
=

n
2

h̄c. (18)

This expression represents an infinite number of quantisa-
tion conditions because of the arbitrariness of the constant k.
Therefore, the idea of the authors of the paper [1] that the ad-
dition of the potential of a magnetic dipole to the Wu-Yang
potentials does not affect the Dirac quantisation condition is
incorrect.
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