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Abstract
Two procedures to introduce the familiar retarded potentials of Maxwell’s
equations are reviewed. The first well-known procedure makes use of the
Lorenz-gauge potentials of Maxwell’s equations. The second less-known
procedure applies the retarded Helmholtz theorem to Maxwell’s equations.
Both procedures are compared in the context of an undergraduate presentation
of electrodynamics. The covariant form of both procedures is discussed for
completeness. As a related discussion, two procedures to introduce the unfa-
miliar instantaneous potentials of Maxwell’s equations are also reviewed. The
first procedure applies the standard Helmholtz theorem to Maxwell’s equations
and the second one uses the Coulomb-gauge potentials of Maxwell’s
equations. The retarded and instantaneous forms of the potentials of Max-
well’s equations are briefly commented upon. The retarded Helmholtz theorem
is used to introduce the retarded potentials of Maxwell’s equations with
magnetic monopoles.

Keywords: Maxwellʼs equations, Helmholtz theorem, gauge invariance

1. Introduction

There are several equivalent procedures to introduce the familiar retarded potentials of
Maxwell’s equations [1–4]. One of these procedures, and perhaps the most popular, is the
traditional one [1] in which one fixes the Lorenz-gauge condition

European Journal of Physics

Eur. J. Phys. 38 (2017) 055203 (13pp) https://doi.org/10.1088/1361-6404/aa7f18

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the

author(s) and the title of the work, journal citation and DOI.

0143-0807/17/055203+13$33.00 © 2017 European Physical Society Printed in the UK 1

mailto:ricardo.heras.13@ucl.ac.uk
https://doi.org/10.1088/1361-6404/aa7f18
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/aa7f18&domain=pdf&date_stamp=2017-08-16
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6404/aa7f18&domain=pdf&date_stamp=2017-08-16
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


c t
A

1
0, 1L

L
2

 +
¶F
¶

=· ( )

(SI units will be used in this paper) in the coupled equations for the scalar and vector
potentials, which have been derived in turn from Maxwell’s equations. As a consequence, the
equations for the potentials are decoupled and thus one finally has two wave equations:

L
2

0 rF = - and A J,L
2

0 m= - where c t12 2 2 2 2 º  - ¶ ¶( ) is the d’Alembert
operator, and tr,r r= ( ) and tJ J r,= ( ) are the charge and current densities. These wave
equations are then solved by assuming appropriate boundary conditions and the obtained
solutions LF and AL are identified with the retarded scalar and vector potentials. Using these
potentials, one corroborates (1) a posteriori.

There is another procedure to obtain the retarded potentials in which one first applies a
retarded form of the Helmholtz theorem [5–9] to the fields of Maxwell’s equations. The
theorem requires the specification of appropriate boundary conditions for the electric and
magnetic fields. Via this procedure, one first obtains retarded expressions for electric and
magnetic fields from which one ‘extracts’ the retarded scalar and vector potentials ‘by
inspection’. One then shows a posteriori that these retarded potentials satisfy the equation
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1
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2
 +

¶F
¶
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and also the wave equations 2
0 rF = - and A J,2

0 m= - which are the same as those
appearing in the traditional procedure. This indirect procedure to obtain the retarded
potentials from the retarded fields has been little explored in the literature [10, 11]. Hopefully,
a comparison between both procedures may be pedagogically useful in an undergraduate
presentation of electrodynamics.

There are also two equivalent methods to introduce instantaneous forms of scalar and
vector potentials of Maxwell’s equations. These instantaneous potentials are rarely mentioned
in textbooks (see, for example, pp 84–8 in [3]), despite their historical importance. In the first
method one fixes the Coulomb-gauge condition

A 0, 3C =· ( )
in the coupled equations for potentials derived from Maxwell’s equations, obtaining the
instantaneous Poisson equations C

2
0r F =- and c tA J E1C

2
0

2m =- - ¶ ¶( ) . By
assuming appropriate boundary conditions, one finds integral (instantaneous) representations
for the scalar and vector potentials. Using these potentials one verifies (3) a posteriori.

In the second method one applies the standard, as opposed to the retarded Helmholtz
theorem, to Maxwell’s equations, obtaining instantaneous expressions for the electric and
magnetic fields, from which one extracts instantaneous scalar and vector potentials by
inspection. A posteriori one shows that the instantaneous vector potential satisfies

A 0 4 =· ( )
and that the instantaneous potentials satisfy the Poisson equations 2

0r F =- and
c tA J E12

0
2m =- - ¶ ¶( ) , which are the same as those appearing in the first procedure.

This paper discusses in some detail the above outlined procedures to introduce retarded
potentials by emphasising the main pedagogical advantages of each procedure in an under-
graduate presentation of electrodynamics. As a complementary material, the two outlined
methods to introduce the little-known instantaneous potentials are also discussed in some
detail. The paper is organised as follows. The traditional procedure based on the use of the
gauge invariance through the adoption of the Lorenz-gauge condition is reviewed in section 2.
The novel procedure based on the retarded Helmholtz theorem is discussed in section 3.
The traditional and novel procedures are formulated in the four-dimensional Minkowski
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space-time in section 4. Advantages of both procedures are enlighten in section 5. For
completeness, the analogous procedures to derive instantaneous forms of the scalar and vector
potentials are discussed in section 6. The instantaneous and retarded versions of the potentials
are briefly commented in section 7 in which some historical remarks are made. An appendix
is given in which the procedure based on the retarded Helmholtz theorem is applied to
introduce the retarded potentials of Maxwell’s equations with magnetic monopoles.

2. Gauge invariance and retarded potentials

Suppose one knows Maxwell’s equations and their gauge invariance but does not know the
retarded Helmholtz theorem. The homogeneous (sourceless) Maxwell’s equations imply the
existence of the potentials Φ and A such that tE A= -F - ¶ ¶ and B A.=  ´ Using
these expressions in the inhomogeneous (source) Maxwell’s equations, one obtains the
coupled equations for the potentials

t
A , 52

0

r
 F +

¶
¶

 = -( · ) ( )

c t
A A J

1
. 62

2 0 m-   +
¶F
¶

= -
⎛
⎝⎜

⎞
⎠⎟· ( )

By adding the identically zero term: c t c t1 1 02 2 2 2 2¶ F ¶ - ¶F ¶ º( ) ( ) to the left of (5) it
follows that the coupled equations are symmetrized [12]:

t c t
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These equations can be uncoupled by exploiting the invariance of the fields E and B under the
gauge transformations

t
A A A, , 9F F¢ = F -

¶L
¶

¢ = + L⟶ ⟶ ( )

where tr,L = L( ) is an arbitrary gauge function. In fact, the arbitrariness of Λ allows one to
chose a set of potentials satisfying the condition
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A

1
0, 10L

L
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 +
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which uncouples equations (7) and (8)and then one obtains two wave equations

A J, , 11L L
2

0

2
0

 
r

mF = - = - ( )

whose retarded solutions give the retarded potentials

R
r

R
rA

J1

4
d ,

4
d , 12L L

0

3 0 3

 ò òp
r m

p
F = ¢ = ¢

[ ] [ ] ( )

where the integrals are extended over all space, R r r= - ¢∣ ∣ with r being the field point and
r¢ the source point, and the square bracket [ ] means that the enclosed quantity is to be
evaluated at the retarded time t t R c¢ = - . The relation (10) is called the Lorenz-gauge
condition and LF and AL are the Lorenz-gauge potentials. To show that potentials Φ and A
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can always be found to satisfy (10), suppose that our original potentials Φ and A satisfy (7)
and (8) but do not satisfy (10), that is, c t gA 1 02 + ¶F ¶ = ¹· ( ) , where g is a known
scalar function of space and time. Since Λ is an arbitrary function one can always demand it
satisfies the wave1 equation: g,2 L = - which guarantees the validity of the Lorenz
condition for the transformed potentials: c tA 1 02 ¢+ ¶F¢ ¶ =· ( ) . In fact, using the
transformations (9) in the expression c tA 1 2 ¢+ ¶F¢ ¶· ( ) it follows that

c t c t t
gA A

1 1
0. 13

2 2
2 ¢ +

¶F¢
¶

=  + L +
¶
¶

F -
¶L
¶

= + L =
⎛
⎝⎜

⎞
⎠⎟· · ( ) ( )

As a final point one can directly verify that the potentials LF and AL given in (12) satisfy (10)
(see (19) for the explicit calculation).

3. Retarded Helmholtz theorem and retarded potentials

Suppose one knows the retarded Helmholtz theorem [5–9] and Maxwell’s equations but does
not know the gauge invariance of these equations. One defines a retarded (causal) vector field
as a time-dependent vector field tF r,( ) whose sources are evaluated at the retarded time
t t R c¢ = - in agreement with the causality principle2. The retarded Helmholtz theorem
states that any retarded vector field tF r,( ) that goes to zero faster than r1 as r  ¥ can be
expressed as [5–9]:

R
r
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r
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¶

¶ ¶
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[ · ] [ ] [ ] ( )

As may be seen, the formal sources of the field F are its divergence, curl and time derivative,
all of them evaluated at the retarded time. If (14) is applied to Maxwell’s equations and an
appropriate integration by parts made3, then one obtains the retarded fields [5–9]:
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From these expressions one can ‘extract’ the retarded scalar and vector potentials:

R
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p
F = ¢ = ¢

[ ] [ ] ( )

in terms of which (15) and (16) take the compact form tE A= -F - ¶ ¶ and
B A.=  ´ The retarded potentials in (17) are seen to satisfy the equation

c t
A

1
0. 18

2
 +

¶F
¶

=· ( )

1 A retarded solution of this equation reads g R r4 d .3ò pL = ¢{[ ] ( )}
2 The notation tF r,( ) is not unambiguous to express a retarded field. One knows that tF r,( ) is a retarded field only
when one observes that their sources are evaluated at the retarded time t t R c¢ = - .
3 In this integration one uses the result t R r t R rF Fd d .3 3ò ò ´ ¶ ¶ ¢ = ¶ ¶ ¢ ´ ¢{[ ] } ( ) {[ ] }
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In fact, from the potentials in (17) and the continuity equation it follows that

c t R
r

c t R
r

R t
r

A
J

J

1

4
d

1

4
d

4

1
d 0, 19

2
0 3

0
2

3

0 3

ò ò

ò

m
p p

r

m
p

r

 +
¶F
¶

=  ¢ +
¶
¶

¢

= ¢ +
¶
¶ ¢

¢ =

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

· · [ ] [ ]

· ( )

where R R RJ J J¢ =  +¢[ · ] · ([ ] ) · ([ ] ), t tr r¶ ¶ ¢ = ¶ ¶[ ] [ ] and the fact that the
surface integral originated by the term RJ¢ · ([ ] ) vanishes at space infinity have been used.
Similarly, if one takes the d’Alembert operator ,2 to the potentials in (17) and uses [13]:

R r r42   p d= - - ¢([ ] ) [ ] ( )4, then one arrives at the wave equations

R
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Equations (12) and (17) describe the same retarded potentials ( LF = F and A AL = ) which
satisfy the same equations and therefore the equivalence between the procedures discussed in
sections 2 and 3 is established.

In the process of extracting the retarded potentials Φ and A from the retarded fields E and
B by inspection, one has implicitly imposed the Lorenz-gauge condition. Accordingly, (18)
should not be interpreted as an additional field equation but as a gauge fixing condition.
Although the definitions of Φ and A in (17) may seem natural, one is not forced to make such
definitions. For example, one could add L, where tr,L( ) is an arbitrary scalar function, to
the expression between the parentheses { } of (16) and the magnetic field remains
unchanged. When one extracts the retarded potentials from the retarded fields by inspection
one tacitly assumes 0L = , i.e. one implicitly adopts the Lorenz-gauge condition.

4. The two procedures in the Minkowski space-time

Suppose one knows the covariant form of Maxwell’s equations expressed in terms of the
four-potential and its associated gauge invariance but does not know the covariant form of the
retarded Helmholtz theorem for antisymmetric tensors [9, 14, 15]. Greek indices , ,m n k¼
run from 0 to 3. The summation convention on repeated indices is adopted. The signature of
the metric is , , ,+ - - -( ). A point is denoted by x x= m. The totally antisymmetric four-
dimensional tensor reads emnab with 10123e = .

The homogeneous Maxwell equation F 0*¶ =m
mn , where F F1 2* e=mn mnkl

kl( ) is the
dual of the electromagnetic field Fmn , implies the existence of the four-potential An such that
F A A= ¶ - ¶mn m n n m, which is inserted in the inhomogeneous Maxwell equation

F J0m¶ =m
mn n , where Jn is the four-current, to obtain the equation

A A J . 220m¶ ¶ - ¶ ¶ =m
m n n

m
m n ( )

4 This nice identity is true for functions such that the quantities R[ ] have not the form R f R F =[ ] ( )[ ]. If
for example R R F =[ ] [ ] then R F 02 =( [ ]) since R F r r4p d- - ¢[ ] ( ) vanishes for r r¹ ¢ because of the delta
function and also for r r= ¢ because this equality implies R=0.
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This equation is invariant under the gauge transformation

A A A , 23¢ = + ¶ Lm m m m⟶ ( )

where xL = L( ) is an arbitrary gauge function of space-time. The arbitrariness of Λ allows us
to chose a four-potential such that

A 0. 24L¶ =m
m ( )

If this condition is used in (22) it reduces to the wave equation

A J , 25L 0m¶ ¶ =m
m n n ( )

whose retarded solution is

A GJ x xd . 26L 0
4òm= ¢ ¢n n ( ) ( )

whereG ct ct R R t t R c Rc4 4 .p p= - ¢ - = - ¢ -{ }( ) { } ( ) is the retarded Green function of
the wave equation, xd4 ¢ is a volume element in space-time and the integral is over all space-time.
Equation (26) represents the covariant form of the retarded potentials.

Analogously, the relation (24) represents the covariant form of the Lorenz-gauge con-
dition. To show that a potential Am can always be found to satisfy (24), suppose that Am

satisfies (22) but does not satisfy (24), that is, A g 0,¶ = ¹m
m where g is a scalar function.

Since Λ is an arbitrary function one can demand the equation g,¶ ¶ L = -m
m which guarantees

the validity of the Lorenz condition for the transformed four-potential: A 0.¶ ¢ =m
m The proof

is as follows. Using the gauge transformation (23) in A¶ ¢m
m one obtains

A A g 0. 27¶ ¢ = ¶ + ¶ L = + ¶ ¶ L =m
m

m
m m

m
m( ) ( )

Suppose now one knows the covariant form of the retarded Helmholtz theorem for
antisymmetric tensors [9, 14, 15] and the covariant form of Maxwell’s equations but does not
know the gauge invariance of these equations. The retarded Helmholtz theorem for anti-
symmetric tensor fields in the Minkowski space-time states that a retarded antisymmetric
tensor field xmn( ) vanishing sufficiently rapidly at spatial infinity is completely determined
by specifying its divergence ¶a al and the divergence of its dual .*¶a

al According to this
theorem the field tensor can then be expressed as:

x G x x G x xd d , 284 4* *  ò ò= ¶ ¶¢ ¢ ¢ - ¶ ¶¢ ¢ ¢mn
l

mn
a

al
l

mn
a

al( ) ( ) ( ) ( )

where ¶ l
mn is an operator antisymmetric in μ and ν defined as d d¶ = ¶ - ¶l

mn
l
n m

l
m n and its

associated dual is given by 1 2* e¶ = ¶l
mn mnab

abl( ) 5. The theorem in (28) can directly be
applied to the covariant form of Maxwell’s equations: F J0m¶ =m

mn n and F 0.*¶ =m
mn In fact,

if one makes the identification F =mn mn and use Maxwell’s equations then one obtains the
retarded electromagnetic field

F GJ x xd . 290
4òm= ¶ ¢ ¢mn

l
mn l ( ) ( )

If the four-potential Al is defined as

A GJ x xd , 300
4òm= ¢ ¢l l ( ) ( )

then the field Fmn takes its familiar form F A A A= ¶ = ¶ - ¶mn
l

mn l m n n m. The four-potential
Al in (30) satisfies the equation

5 These operators satisfy , , ,* **e d¶ = ¶ ¶ ¶ = ¶ ¶ - ¶ ¶ ¶ = - ¶l
mn

l
mna

a m l
mn

l
n

m
m

l
n

l
mn

l
mn and 0.*¶ ¶ =m l

mn
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A 0. 31¶ =l
l ( )

This can directly be shown as follows:

A GJ x x G J x xd d 0, 320
4

0
4ò òm m¶ = ¶ ¢ ¢ = ¶¢ ¢ ¢ =l

l
l

l
l

l( ) ( ) ( )

where the continuity equation J 0;¶¢ =l
l the identities G G GJ,¶ = -¶¢ ¶¢ =l l l

l( )
GJ G J ;-¶ + ¶¢l

l
l

l and the fact that the surface integral originated by GJ¶¢l l( ) vanishes at
spatial infinity have been used. Similarly, if one takes the d’Alembert operator 2¶ ¶ º -m

m

to the four-potential in (30) then one obtains the wave equation

A GJ x x Jd , 330
4

0òm m¶ ¶ = ¶ ¶ ¢ ¢ =m
m l

m
m l l( ) ( )

where the result G x x4d¶ ¶ = - ¢m
m ( )( ) has been used.

Clearly, (26) and (30) describe the same retarded four-potential A AL =n n( ). Therefore the
equivalence between the two covariant procedures to derive this retarded four-potential is
established.

5. Conceptual and pedagogical advantages of the two procedures

The traditional procedure will be called the first procedure and the procedure based on the
retarded Helmholtz theorem will be called the second procedure.

• The first procedure uses gauge invariance and then one is rapidly convinced that the
scalar and vector potentials cannot have a physical meaning because they are ambiguous
to describe the observed electric and magnetic fields. However, when the gauge is fixed
through the adoption of the Lorenz gauge then one obtains well-defined wave equations
for the potentials and if additionally one assumes causality and appropriate boundary
conditions then one can solve these equations obtaining the retarded potentials. A
demonstration of the uniqueness of the retarded potentials can be found in [16]. Put
differently, the uniqueness of the retarded potentials is obtained by imposing the Lorenz-
gauge condition, causality, and appropriate boundary conditions.

• In the first procedure one can fix another gauge condition (for example, the Kirchhoff
gauge [17]: c tA 1 02 - ¶F ¶ =· ( ) ) and then the propagation properties of the
potentials will be different to those of the retarded potentials. However, as pointed out by
Jackson [18]: ‘...whatever propagation or nonpropagation characteristics are exhibited by
the potentials in a particular gauge, the electric and magnetic fields are always the same
and display the experimentally verified properties of causality and propagation at the
speed of light’.

• In the first procedure the starting point is the Maxwell’s homogeneous equations:
B 0 =· and tE B 0 ´ + ¶ ¶ = , which allow one to introduce the potentials Φ

and A via tE A= -F - ¶ ¶ and B A.=  ´ However, a different situation occurs
for Maxwell’s equations with magnetic monopoles which are no longer homogeneous:

B g0m r =· and tE B Jg0m ´ + ¶ ¶ = - , where gr and Jg are the magnetic charge
and current densities. The first of these equations does not imply a potential A such that
B A.=  ´ If one insists in considering the validity of this last equation in the
presence of magnetic charges then the potential A must be singular in a defined region
of space. This was the approach followed by Dirac to find its quantisation condition,
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according to which the product of the electric and magnetic charges must be quantised
in integer multiples of the smallest quantum of angular momentum, 2 [19].
Alternatively, Maxwell’s equations with magnetic monopoles can be expressed in terms
of non-singular potentials if one introduces by hand two pairs of potentials: A,e eF( )
and A,g eF( ).

• The second procedure based on the retarded Helmholtz theorem is relatively new in the
literature, although the idea of introducing potentials by considering expressions for fields
was recently discussed [10, 11]. In this second procedure one applies this theorem to the
electric and magnetic fields of Maxwell’s equations. The theorem guarantees causality,
propagation at the speed of light and uniqueness of the electric and magnetic fields
(provided they vanish sufficiently rapidly at infinity). In this procedure one ‘extracts’ by
inspection the retarded potentials from the expressions for the retarded fields. A posteriori
one verifies that these retarded potentials satisfy the same wave equations than those of
the first procedure and also the Lorenz-gauge condition.

• The second procedure is appropriate to introduce the retarded potentials of
electrodynamics with magnetic monopoles. The appendix shows how the retarded
electric potentials A,e eF( ) and the retarded magnetic potentials A,g gF( ) can be easily
introduced by inspection by considering the expressions for the retarded fields produced
by electric and magnetic sources. The relation between fields and potentials is generalised
by the following expressions

t

c t

E A
A

B A
A

,

1
. 34

e g
e

g e
g

2

=-F -  ´ -
¶
¶

=-F +  ´ -
¶

¶
( )

• The second procedure can be used as an alternative method to introduce the retarded
potentials in an undergraduate course in electrodynamics. In fact, after addressing the first
procedure, the instructor could optionally present the second procedure with the purpose
of enlighten the concept of retarded potentials. As Richard Feynman pointed out [20] ‘ ...
there is a pleasure in recognising old things from a new point of view. Also, there are
problems for which the new point of view offers a distinct advantage’.

• As shown in section 4 both procedures can be expressed in the four-dimensional
Minkowski space-time. In this covariant presentation both procedures use the retarded
Green function of the wave equation. Therefore they are suitable for a graduate course in
electrodynamics.

6. The instantaneous potentials of Maxwell’s equations

According to the traditional procedure one can adopt the Coulomb-gauge condition

A 0, 35C =· ( )

in equations (5) and (6). Then they become

c t
A J

E
,

1
. 36C C

2

0

2
0 2

r
m F =-  =- -

¶
¶

( )
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These equations are satisfied by the instantaneous potentials
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These potentials are rarely discussed in standard textbooks (Rosser in [3] pp 84–88 comments
on these potentials). To show that a potential A satisfying the Coulomb-gauge can always be
found, suppose that the original potential A satisfies the second equation in (36) but does not
satisfy (35), i.e. gA 0 = ¹· , where g is a known scalar function of space and time. Gauge
invariance allows one to write the Poisson equation: g2 L = - , which guarantees the
validity of the Coulomb-gauge condition for the transformed potential: A 0 ¢ =· . In fact,
using the second transformation of (9) in the expression A ¢· it follows that

gA A 0. 392 ¢ =  + L = +  L =· · ( ) ( )

A second procedure allows one to find the instantaneous potentials by applying the
standard Helmholtz theorem to Maxwell’s equations. This theorem can be formulated for
time-dependent vector fields. It states that any vector field tF r,( ) that goes to zero faster than

r1 as r  ¥ can be expressed as [4, 21]:

t
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When (40) is applied to Maxwell’s equations and an appropriate integration by parts is made,
one obtains the instantaneous electric and magnetic fields

t
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We then define the instantaneous potentials tr,F( ) and tA r,( ) as
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The instantaneous potential A is seen to satisfy the equation

A 0. 45 =· ( )
In fact, from (43), Gauss’ law, and the continuity equation it follows that
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where the identity R R RJ J J¢ =  +¢( · ) · ( ) · ( ), and the fact that the surface integral
originated by the term RJ¢ · ( ) vanishes at space infinity have been used. Similarly, if one
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takes the Laplacian operator∇2 to the potentials in (43) and (44) then one obtains the Poisson
equations

R
r

1

4
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0

2 3

0 òp
r r

 F =  ¢ = -⎜ ⎟
⎛
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c t R
r

c t
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J E
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4

d
1

4
d

1
, 482 0 2 3

2
2 3

0 2ò ò
m
p p
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¶
¶

 ¢ = - -
¶
¶

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

where the identity R r r1 42 pd = - - ¢( ) ( ) has been used.
As may be seen, the set of equations formed by (37) and (38) and the set formed by (43)

and (44) describe the same instantaneous potentials ( CF = F and A AC = ). Therefore the
equivalence between the two procedures to derive these instantaneous potentials is
established.

7. Instantaneous or retarded: a matter of taste?

The question in the title can be put in a historical perspective. Consider again the retarded
potentials (7) in their explicit forms:

t
t R c

R
r t

t R c
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rr
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3 0 3

 ò òp
r m

p
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The temporal connection between the potentials Φ and A and their sources the ρ and J is
manifestly retarded, i.e. to determine the potentials at the observation time t one needs to
know the sources at the retarded time t R c- .

Consider now the instantaneous potentials given in (43) and (44):

t
t
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Maxwell called the ‘true current’ the sum of the conduction and displacement currents [22]:
tJ E0+ ¶ ¶ and considered the latter as being ‘electromagnetically equivalent’ to the

former. Notice the manifestly instantaneous connection between the potentials Φ and A and
their sources J,r and tE0 ¶ ¶ , i.e. to determine the potentials at the time t one needs to
know their sources at the same time.

In 1894 Poincaré pointed out [23]: ‘In calculating A (the potential given in (50))
Maxwell takes into account the currents of conduction J[ ] and those of displacement

tE ;0 ¶ ¶[ ] and he supposes that the attraction takes place according to Newton’s law, i.e.
instantaneously. But in calculating A[ ] in (49) on the contrary we take account only of
conduction currents J[ ] and we suppose the attraction is propagated with the velocity of light.
It is a matter of indifference whether we make this hypothesis of a propagation in time and
consider only the induction due to conduction currents, or whether like Maxwell, we retain
the old law of instantaneous induction and consider both conduction and the displacement
currents’. The lesson one should learn from Poincaré’s statement is that there is a dual
description of potentials satisfying Maxwell’s equations. Both descriptions are formally
correct but their interpretation and practical usefulness is different.

As already noted, the little-used equations in (50) describe an instantaneous connection
between the potentials Φ and A and the sources J,r and tE0 ¶ ¶ . While the densities ρ and
J are specified independently from the potentials Φ and A, the displacement current tE0 ¶ ¶
depends on the field tE A= -F - ¶ ¶ , i.e. on the potentials Φ and A themselves.
According to the second equation in (50) to determine the field A, one needs to know, besides
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the current density J, the field E (or its time derivative) and according to
tE A= -F - ¶ ¶ , one needs to know, besides Φ, the potential A (or its time derivative).

Several authors have pointed out the little practical usefulness of the instantaneous potentials
in (50). Jackson has emphasised [24]: ‘With the time derivative of the electric field as part of
the ‘source’, equation (second in (50)) is only a curiosity, not a useful tool for finding the
fields from their sources’. Rosser [25] has claimed that the second equation in (50) ‘is really a
little bit of an illusion’ and has stressed the circular argument involved in the determination of
this equation. On the contrary, equations (49) describe a retarded connection between the
potentials Φ and A and their true sources ρ and J, which are specified independently from Φ

and A. But perhaps, from a physical point of view the more criticisable aspect of the
instantaneous vector potential A in equation (50) is that it is determined by the displacement
current which is a non-local source [26].
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Appendix. Magnetic monopoles and the retarded Helmholtz theorem

Consider Maxwell equations with magnetic monopoles:

E
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, A.1e
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¶
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= ( )

If (14) is applied to (A.1)–(A.4) and an appropriate integration by parts made, then one gets
the retarded fields [5]:
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From these expressions one can extract by inspection the retarded electric potentials A,e eF( )
and the retarded magnetic potentials A,g gF( ):
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In terms of these potentials the equations (A.5) and (A.6) take the form
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The retarded potentials in (A.7) and (A.8) are seen to satisfy the equations
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In fact, using the potentials in (A.7) and (A.8) and the continuity equations for the electric and
magnetic charges one obtains

c t R
r

c t R
r

R t
r

A
J

J

1

4
d

1

4
d

4

1
d 0, A.12

e
e e e

e
e

2
0 3

0
2

3

0 3

ò ò

ò

m
p p

r

m
p

r

 +
¶F
¶

=  ¢ +
¶
¶

¢

= ¢ +
¶
¶ ¢

¢ =

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

· · [ ] [ ]

· ( )

t R
r

t R
r

R t
r

A
J

J

4
d

4
d

4

1
d 0, A.13

g
g g g

g
g

0 3 0 3

0 3

ò ò

ò

m
p

m
p

r

m
p

r

 +
¶F

¶
=  ¢ +

¶
¶

¢

= ¢ +
¶

¶ ¢
¢ =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

· ·
[ ] [ ]

· ( )

where again the identities R R RJ J J ,e e e¢ =  +¢[ · ] · ([ ] ) · ([ ] ) RJg¢ =[ · ]
R RJ J ,g g +¢· ([ ] ) · ([ ] ) t te er r¶ ¶ = ¶ ¶¢[ ] [ ]/ / and t tg gr r¶ ¶ = ¶ ¶¢[ ] [ ]/ / have been

used, and also the surface integrals originated by the terms RJe¢ · ([ ] ) and RJg¢ · ([ ] )
vanish at space infinity. Similarly, if one takes the d’Alembert operator ,2 to the potentials in
(A.7) and (A.8) then one gets the set of four wave equations
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where the identity R r r... 4 ...2 p d= - - ¢([ ] ) [ ] ( ) has been used.
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